Extreme Learning Machine (ELM) is a recently discovered way of training Single Layer Feed-forward Neural Networks with an explicitly given solution, which exists because the input weights and biases are generated randomly and never change. The method in general achieves performance comparable to Error Back-Propagation, but the training time is up to 5 orders of magnitude smaller. Despite a random initialization, the regularization procedures explained in the thesis ensure consistently good results.
While the general methodology of ELMs is well developed, the sheer speed of the method enables its un-typical usage for state-of-the-art techniques based on repetitive model re-training and re-evaluation. Three of such techniques are explained in the third chapter: a way of visualizing high-dimensional data onto a provided fixed set of visualization points, an approach for detecting samples in a dataset with incorrect labels (mistakenly assigned, mistyped or a low confidence), and a way of computing confidence intervals for ELM predictions. All three methods prove useful, and allow even more applications in the future.
ELM method is a promising basis for dealing with Big Data, because it naturally deals with the problem of large data size. An adaptation of ELM to Big Data problems, and a corresponding toolbox (published and freely available) are described in chapter 4. An adaptation includes an iterative solution of ELM which satisfies a limited computer memory constraints and allows for a convenient parallelization. Other tools are GPU-accelerated computations and support for a convenient huge data storage format. The chapter also provides two real-world examples of dealing with Big Data using ELMs, which present other problems of Big Data such as veracity and velocity, and solutions to them in the particular problem context.
Identifer | oai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-6380 |
Date | 01 May 2016 |
Creators | Akusok, Anton |
Contributors | Lendasse, Amaury |
Publisher | University of Iowa |
Source Sets | University of Iowa |
Language | English |
Detected Language | English |
Type | dissertation |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | Copyright 2016 Anton Akusok |
Page generated in 0.0013 seconds