This thesis focuses on creation and comparison of ice hockey matches prediction models with the view on ice hockey world championship matches. The first part is dedicated to collecting theoretical knowledge needed for solving this problem and the second to applying this set of knowledge. The model creation approach is intertwined with the CRISP-DM data mining methodology, which also defines several chapters of this work. As input data for the models I used performance statistics of individual ice hockey players -- this brought me to implementing a script capable of automatic downloading and aggregating of player data from the Internet. Downloaded data were arranged so as they would represent ice hockey matches that were played during the championships (team A consisting of players X against team B consisting of players Y) with result of the match added to the data row. Data were also analyzed to detect any quality issue prior to the model creation and transformed into an integrated view. Result assessment consists of two parts, in the first the technical evaluation of models using data from the testing data set takes place. The first part also points out practical usefulness of the models. The next part is about comparing result data with the betting odds -- the business relevance of the model. This part uses open source data about betting odds listed on the corresponding matches. Finally, the outcome model is used for predicting matches of the group phase of the world championship taking place in Prague, 2015.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:193929 |
Date | January 2014 |
Creators | Matuš, Martin |
Contributors | Maryška, Miloš, Volavka, Filip |
Publisher | Vysoká škola ekonomická v Praze |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.006 seconds