Accurate and timely diagnosis of faults is essential for the reliability and security of power grid operation and maintenance. The emergence of big data has enabled the incorporation of a vast amount of information in order to create custom fault datasets and improve the diagnostic capabilities of existing frameworks. Intelligent systems have been successful in incorporating big data to improve diagnostic performance using computational intelligence and machine learning based on fault datasets. Among these systems are fuzzy inference systems with the ability to tackle the ambiguities and uncertainties of a variety of input data such as climate data. This makes these systems a good choice for extracting knowledge from energy big data. In this thesis, qualitative climate information is used to construct a fault dataset. A fuzzy inference system is designed whose parameters are optimized using a single layer artificial neural network. This fault diagnosis framework maps the relationship between fault variables in the fault dataset and fault types in real-time to improve the accuracy and cost efficiency of the framework. / Graduate
Identifer | oai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/12161 |
Date | 30 September 2020 |
Creators | Esgandarnejad, Babak |
Contributors | Gulliver, T. Aaron |
Source Sets | University of Victoria |
Language | English, English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | Available to the World Wide Web |
Page generated in 0.0017 seconds