This manuscript investigates the use of microring resonators to create all-optical reservoir-computing networks implemented in silicon photonics. Artificial neural networks and reservoir-computing are promising applications for integrated photonics, as they could make use of the bandwidth and the intrinsic parallelism of optical signals. This work mainly illustrates two aspects: the modelling of photonic integrated circuits and the experimental results obtained with all-optical devices. The modelling of photonic integrated circuits is examined in detail, both concerning fundamental theory and from the point of view of numerical simulations. In particular, the simulations focus on the nonlinear effects present in integrated optical cavities, which increase the inherent complexity of their optical response. Toward this objective, I developed a new numerical tool, precise, which can simulate arbitrary circuits, taking into account both linear propagation and nonlinear effects. The experimental results concentrate on the use of SCISSORs and a single microring resonator as reservoirs and the complex perceptron scheme. The devices have been extensively tested with logical operations, achieving bit error rates of less than 10^−5 at 16 Gbps in the case of the complex perceptron. Additionally, an in-depth explanation of the experimental setup and the description of the manufactured designs are provided. The achievements reported in this work mark an encouraging first step in the direction of the development of novel networks that employ the full potential of all-optical devices.
Identifer | oai:union.ndltd.org:unitn.it/oai:iris.unitn.it:11572/344624 |
Date | 23 May 2022 |
Creators | Bazzanella, Davide |
Contributors | Bazzanella, Davide, Bettotti, Paolo, Mancinelli, Mattia |
Publisher | Università degli studi di Trento, place:TRENTO |
Source Sets | Università di Trento |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/openAccess |
Relation | firstpage:1, lastpage:134, numberofpages:134 |
Page generated in 0.0019 seconds