Return to search

The RHIZOME architecture : a hybrid neurobehavioral control architecture for autonomous vision-based indoor robot navigation / L’architecture RHIZOME : une architecture de contrôle neurocomportementale hybride pour la navigation autonome indoor des robots mobiles reposant sur la perception visuelle

Les travaux décrits dans cette thèse apportent une contribution au problème de la navigation autonome de robots mobiles dans un contexte de vision indoor. Il s’agit de chercher à concilier les avantages des différents paradigmes d’architecture de contrôle et des stratégies de navigation. Ainsi, nous proposons l’architecture RHIZOME (Robotic Hybrid Indoor-Zone Operational ModulE) : une architecture unique de contrôle robotique mettant en synergie ces différentes approches en s’appuyant sur un système neuronal. Les interactions du robot avec son environnement ainsi que les multiples connexions neuronales permettent à l’ensemble du système de s’adapter aux conditions de navigation. L’architecture RHIZOME proposée combine les avantages des approches comportementales (e.g. rapidité de réaction face à des problèmes imprévus dans un contexte d’environnement dynamique), et ceux des approches délibératives qui tirent profit d’une connaissance a priori de l’environnement. Cependant, cette connaissance est uniquement exploitée pour corroborer les informations perçues visuellement avec celles embarquées. Elle est représentée par une séquence de symboles artificiels de navigation guidant le robot vers sa destination finale. Cette séquence est présentée au robot soit sous la forme d’une liste de paramètres, soit sous la forme d’un plan. Dans ce dernier cas, le robot doit extraire lui-même la séquence de symboles à suivre grâce à une chaine de traitements d’images. Ainsi, afin de prendre la bonne décision lors de sa navigation, le robot traite l’ensemble de l’information perçue, la compare en temps réel avec l’information a priori apportée ou extraite, et réagit en conséquence. Lorsque certains symboles de navigation ne sont plus présents dans l’environnement de navigation, l’architecture RHIZOME construit de nouveaux lieux de référence à partir des panoramas extraits de ces lieux. Ainsi, le robot, lors de phases exploratoires, peut s’appuyer sur ces nouvelles informations pour atteindre sa destination finale, et surmonter des situations imprévues. Nous avons mis en place notre architecture sur le robot humanoïde NAO. Les résultats expérimentaux obtenus lors d’une navigation indoor, dans des scenarios à la fois déterministes et stochastiques, montrent la faisabilité et la robustesse de cette approche unifiée. / The work described in this dissertation is a contribution to the problem of autonomous indoor vision-based mobile robot navigation, which is still a vast ongoing research topic. It addresses it by trying to conciliate all differences found among the state-of-the-art control architecture paradigms and navigation strategies. Hence, the author proposes the RHIZOME architecture (Robotic Hybrid Indoor-Zone Operational ModulE) : a unique robotic control architecture capable of creating a synergy of different approaches by merging them into a neural system. The interactions of the robot with its environment and the multiple neural connections allow the whole system to adapt to navigation conditions. The RHIZOME architecture preserves all the advantages of behavior-based architectures such as rapid responses to unforeseen problems in dynamic environments while combining it with the a priori knowledge of the world used indeliberative architectures. However, this knowledge is used to only corroborate the dynamic visual perception information and embedded knowledge, instead of directly controlling the actions of the robot as most hybrid architectures do. The information is represented by a sequence of artificial navigation signs leading to the final destination that are expected to be found in the navigation path. Such sequence is provided to the robot either by means of a program command or by enabling it to extract itself the sequence from a floor plan. This latter implies the execution of a floor plan analysis process. Consequently, in order to take the right decision during navigation, the robot processes both set of information, compares them in real time and reacts accordingly. When navigation signs are not present in the navigation environment as expected, the RHIZOME architecture builds new reference places from landmark constellations, which are extracted from these places and learns them. Thus, during navigation, the robot can use this new information to achieve its final destination by overcoming unforeseen situations.The overall architecture has been implemented on the NAO humanoid robot. Real-time experimental results during indoor navigation under both, deterministic and stochastic scenarios show the feasibility and robustness of the proposed unified approach.

Identiferoai:union.ndltd.org:theses.fr/2017LAROS001
Date11 January 2017
CreatorsRojas Castro, Dalia Marcela
ContributorsLa Rochelle, Ménard, Michel, Revel, Arnaud
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds