Return to search

Dynamics of gravity oriented axi-symmetric satellites with thermally flexed appendages

The equations of motion for a satellite with a rigid central body and a pair of appendages deforming due to thermal effects of the solar radiation are derived. The dynamics of the system is studied in two stages: (i) librational dynamics of the central body with quasi-steady thermally flexed appendages; (ii) coupled librational/vibrational dynamics of the spacecraft.
Response of the system is investigated numerically over a range of system parameters and effect of the thermal deformations assessed. The study indicates that for a circular orbit, the flexible system can become unstable under critical combinations of system parameters and initial conditions although the corresponding rigid system continues to be stable. However, in eccentric orbits, depending on the initial conditions, thermally flexed appendages can stabilize or destabliIize the system. Attempt is also made to obtain an approximate closed-form (analytical) solution of the problem to quickly assess trends and gain better physical appreciation of response characteristics during the preliminary design. Comparisons with numerical results show approximate analysis to be of an acceptable accuracy for the intended objective. The closed-form solution can be used with a measure of confidence thus promising a substantial saving in time, effort, and computational cost. / Applied Science, Faculty of / Mechanical Engineering, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/26727
Date January 1986
CreatorsNg, Chun Ki Alfred
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.002 seconds