Artificiella neuronnät (ANN), som tränas för att approximera ett problem, använder träningsdata från problemdomänen. Då denna mängd träningsdata kan vara ofullständig behövs det en analysmetod som visar hur nätverket uppför sig. En sådan analysmetod är invertering av nätverket. Invertering innebär att data som ger ett specifikt resultat i nätverket identifieras. Dessa resultat kan ge exempel som visar på brister eller felaktigheter i nätverket. Det här projektet använder ett ANN som ska klassificera handskrivna siffror. Resultatet från inverteringen visas för en "expertpanel". Panelen får avgöra vilka exempel som inte ska anses vara siffror. De utsorterade exemplen används sedan i en ny mängd träningsdata i syfte att förbättra nätverkets förmåga att klassificera de handskrivna siffrorna. Resultaten från experimentet visar att nätverkets klassificeringsförmåga inte skiljer sig nämnvärt från ett traditionellt tränat ANN. Dock kan det finnas egenheter hos nätverket som har förbättrats och som inte har identifierats i det här projektet.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:his-536 |
Date | January 2001 |
Creators | Larsson, Christer |
Publisher | Högskolan i Skövde, Institutionen för datavetenskap, Skövde : Institutionen för datavetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/postscript, application/pdf |
Rights | info:eu-repo/semantics/openAccess, info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds