Return to search

Strategisk förnyelseplanering av spillvattenledningar : Med ett artificiellt neuralt nätverk som analysverktyg / Strategic sewage pipe renewal process with the help of artificial neural networks

Sveriges kommunala spillvattenledningsnät står idag inför en enorm utmaning, då eftersattunderhåll i kombination med klimatförändringar kommer kräva stora framtida investeringaroch tidskrävande analyser. Detta examensarbete har utförts med målet att förenkla dettastundande förnyelsearbete. Som metod har en enkät utformats, och besvarats av totalt 84kommuner, med syftet att presentera en lägesbild. Vidare har ett artificiellt neuralt nätverkutvecklats, och tillämpats på data från Täby kommun, med syftet att förutspå vilkaspillvattenledningar i ett ledningsnät som har behov av förnyelse. Resultatet visar att det finns ett stort förbättringsbehov i det strategiska förnyelsearbetet.Störst behov, och potential, finns i hantering och insamling av data, där artificiella neuralanätverk kan tillämpas och utnyttjas som ett effektivt och intelligent verktyg. Det artificiellaneurala nätverket som utvecklats, och tillämpats, i detta examensarbete uppnådde en högprecision (93 %), och beräknade att Täby kommun har ca 10-20 spillvattenledningar medoupptäckt förnyelsebehov. Detta bör dock tas med viss reservation pga. bristandedatakvalitet. Avslutningsvis kan konstateras att lösningen för framtidens ledningsförnyelserelateradeproblem och utmaningar, ligger i förmågan att effektivt och intelligent samla in, struktureraoch analysera data om ledningsnäten. Artificiella neurala nätverk är ett verktyg som kanoch bör användas för detta ändamål då man, med hjälp av artificiell intelligens, kan göraprecisa analyser och skapa helhetsbilder över ledningsnät, vilket kan spara bådefinansiella, temporala och personella resurser. / Aging sewer systems and deferred maintenance pose one of the greatest challenges toSwedish municipal infrastructure in the future. This degree project has been completedwith the aim to develop a method with which to sufficiently solve these future challenges,and help decision makers to properly invest in the networks, and optimise the pipe renewalprocess. As a methodology, a survey has been created, and answered by 84representatives from various municipalities and water and waste organisations, in order topresent a deeper understanding of the current situation in Sweden. Furthermore, anartificial neural network has been developed, and trained with data from Täby municipality,with the purpose of predicting which pipes in a sewer network that need to be renewed. The results show that there is a great need for improvement in the strategic renewalplanning. The greatest need, and potential, is found in the collection and processing ofdata, where artificial neural networks can be applied as a highly efficient and intelligenttool, which is proven by the high accuracy (93 %) and strong ability to predict pipes withrenewal needs (ca 10-20 pipes for Täby municipality) that the neural network developedfor this degree project showed. It is, however, important to emphasize that the quality ofthe obtained data from Täby was relatively low, and that the results therefore has to beviewed with some skepticism. It is nevertheless reasonable to assume that artificial intelligence, and more specifically,artificial neural networks, will play an important role in tackling future challenges related tostrategic asset management and renewal planning for underground sewer infrastructure.The main solution lies in the ability to efficiently and intelligently collect, structure, andprocess data, and this is a field where artificial neural networks, as made evident by thisdegree project, certainly have abilities to flourish and contribute to savings in bothfinancial, temporal and human resources.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-214400
Date January 2017
CreatorsRehn, David
PublisherKTH, Vattendragsteknik
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-HYD 2017:07

Page generated in 0.0107 seconds