Return to search

Aspects explicites des fonctions L et applications / Explicit aspects of L-functions and applications

Cette thèse s'intéresse aux fonctions L, à leurs aspects explicites et à leurs applications Dans le premier chapitre, nous donnons une définition précise de ce que nous appelons une fonction L ainsi que leurs principales propriétés, notamment concernant les invariants appelés paramètres locaux. Ensuite, nous traitons le cas des fonctions L d'Artin. Pour celles-ci, nous avons créé un programme dans le logiciel PARI/GP donnant les coefficients et les invariants d'une fonction L d'Artin lorsque le corps de base est Q.Le deuxième chapitre explicite un théorème dû à Henryk Iwaniec et Emmanuel Kowalski permettant de différencier deux fonctions L générales en considérant leurs paramètres locaux pour tous les premiers jusqu'à une certaine borne théorique.Dans la suite, nous constaterons que distinguer la somme des paramètres locaux de fonctions L d'Artin revient à séparer les caractères associés par les automorphismes de Frobenius. Ce sera l'objet du troisième chapitre qui est à relier au théorème de Chebotarev. En appliquant notre résultat à des caractères conjugués du groupe alterné, on obtient une borne sur un nombre premier p donnant l'écriture de la factorisation modulo p d'un polynôme répondant à certains critères. Ce travail est à comparer avec un résultat de Joël Bellaïche (2013). Nous illustrons enfin numériquement nos résultats en étudiant l'évolution de la borne sur des polynômes de la forme X^n+uX+v avec n=5, 7 et 13. / This thesis focuses on L-functions, their explicit aspects and their applications.In the first chapter, we give a precise definition of L-functions and their main properties, especially about the invariants called local parameters. Then, we deal with Artin L-functions. For them, we have created a computer program in PARI/GP which gives the coefficients and the invariants for an Artin L-function above Q.In the second chapter, we make explicit a theorem of Henryk Iwaniec and Emmanuel Kowalski, which distinguishes between two L-functions by considering their local parameters for primes up to a theoretical bound.Actually, distinguishing between sums of local parameters of Artin L-functions is the same as separating the associated characters by the Frobenius automorphism. This is the subject of the third chapter, that can be related to Chebotarev Theorem. By applying the result to conjugate characters of the alternating group, we get a bound for a prime p giving the factorization modulo $p$ of a certain polynomial. This work has to be compared with a result from Joël Bellaïche (2013).Finally, we numerically illustrate our results by studying the evolution of the bound on polynomials X^n+uX+v, for n=5, 7 and 13.

Identiferoai:union.ndltd.org:theses.fr/2016BESA2074
Date04 April 2016
CreatorsEuvrard, Charlotte
ContributorsBesançon, Delaunay, Christophe, Maire, Christian
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds