In this dissertation, we will investigate aspects of Auslander-Reiten theory adapted to the setting of systems of submodule embeddings. Using this theory, we can compute Auslander-Reiten quivers of such categories, which among other information, yields valuable information about the indecomposable objects in such a category. A main result of the dissertation is an adaptation to this situation of the Auslander and Ringel-Tachikawa Theorem which states that for an artinian ring R of finite representation type, each R-module is a direct sum of finite-length indecomposable R-modules. In cases where this applies, the indecomposable objects obtained in the Auslander-Reiten quiver give the building blocks for the objects in the category. We also briefly discuss in which cases systems of submodule embeddings form a Frobenius category, and for a few examples explore pointwise Calabi-Yau dimension of such a category. / by Audrey Moore. / Thesis (Ph.D.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_3409 |
Contributors | Moore, Audrey., Charles E. Schmidt College of Science, Department of Mathematical Sciences |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Text, Electronic Thesis or Dissertation |
Format | xi, 112 p. : ill., electronic |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0017 seconds