Let (Γ,ρ) be a directed graph with relations. Let F: Γ’ → Γ be a topological covering. It is proved in this thesis that there is a set of relations ρ̅ on Γ such that the category of K-respresentations of Γ’ whose images under the covering functor satisfy ρ is equivalent to the category of finite-dimensional, grades KΓ/<ρ̅>-modules. If Γ’ is the universal cover of Γ, then this category is called the category of unwindable KΓ/<ρ>-modules. For arrow unique graphs it is shown that the category of unwindable KΓ/<ρ>-modules does not depend on <ρ>. Also, it is shown that for arrow unique graphs the finite dimensional uniserial KΓ/<ρ>-modules are unwindable.
Let Γ be an arrow unique graph with commutativity relations, ρ. In Section 2, the concept of unwindable modules is used to determine whether a certain factor ring of KΓ/<ρ> is of finite representation type.
In a different vein, the relationship between almost split sequences over Artin algebras and the almost split sequences over factor rings of such algebras is studied. Let Λ be an Artin algebra and let Λ̅ be a factor ring of Λ. Two sets of necessary and sufficient conditions are obtained for determining when an almost split sequence of Λ̅-modules remains an almost split sequence when viewed as a sequence of Λ-modules. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/82612 |
Date | January 1986 |
Creators | Weaver, Martha Ellen |
Contributors | Mathematics, Green, Edward, Herdman, Terry L., Fletcher, Peter, Brown, E.A., Arnold, Jesse T. |
Publisher | Virginia Polytechnic Institute and State University |
Source Sets | Virginia Tech Theses and Dissertation |
Language | en_US |
Detected Language | English |
Type | Dissertation, Text |
Format | v, 100 leaves, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | OCLC# 15174833 |
Page generated in 0.0026 seconds