Return to search

Vitamin C as a modifier of mammalian epigenetics: implications for adaptive immunity

Ascorbic acid (AA), in popular speech vitamin C, is a commonly known nutrient. It is involved in several biological processes and deficiency can lead to scurvy. Recent publications have shown the impact of AA on epigenetic regulation in mice. Addition of AA, via enzymatic activity, enhances the generation of 5-hydroxymethylcytosine (5hmC), which is an intermediate in active demethylation of DNA. The role of AA on epigenetic changes in humans has to our knowledge never been studied. In this study, naïve CD4+ T cells from blood donors were used as a model system to investigate AAs possible role in methylation changes in the immune system. By using dot-blot assay, hydroxymethylated DNA immunoprecipitation (hmeDIP) and qPCR, changes in methylation executed by AA could be detected. A confirmation of AAs impact on epigenetic changes in mice was observed. AA enhanced the levels of 5hmC compared to untreated cells. The Jurkat cell line, a human T lymphocyte cell line, showed an opposite result. Treatment with AA decreased the levels of 5hmC compared to untreated cells. When comparing this result with the results obtained in human naïve T cells, the same observation was made. The difference between mouse and human in the ability of producing and metabolize AA could be a reason for this opposite result. Since AA had the ability to modify epigenetic changes in primary human CD4+ T cells, the results suggest that AA may have a function in the human immune system.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-105389
Date January 2013
CreatorsHåkman, Jonna
PublisherLinköpings universitet, Institutionen för klinisk och experimentell medicin, Linköpings universitet, Hälsouniversitetet
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.012 seconds