Return to search

Modifizierte Elektroden zum elektrochemischen Nachweis bioaktiver Stoffe

Katecholamine (Dopamin, Adrenalin, Noradrenalin) und Serotonin sind wichtige Monoamin-Neurotransmitter im menschlichen zentralen Nervensystem, deren quantitative Bestimmung von großem medizinischen Interesse ist, weil damit Aussagen zum Verlauf von Nervenkrankheiten und zur Tumorgefährdung des sympathoadrenalen bzw. neuroendokrinen Systems möglich sind. Ascorbinsäure und Harnsäure finden sich in vielen Körperflüssigkeiten. Ihre Bestimmung ist klinisch ebenfalls bedeutend, da deren Konzentration als Indikatoren bekannter Krankheitsbilder dienen.
Etablierte Standardmethoden, wie die Hochleistungsflüssigkeitschromatographie (HPLC) und immunologische Nachweisverfahren (ELISA) werden im klinischen Bereich zur Bestimmung der Neurotransmitter genutzt. Diese sind kostenintensiv und zeitaufwändig und daher für die Anwendung in den Arztpraxen, vor allem in Entwicklungsländern nicht geeignet.
Elektrochemische Verfahren, insbesondere voltammetrische Messmethode haben den Vorteil, solche Bestimmungen in einfacher Weise zu ermöglichen. In der Literatur finden sich Angaben zu eingesetzten Elektroden auf Kohlenstoffbasis mit hoher Sensitivität für die Katecholamine. Allerdings wurden diese Elektroden meist einzeln hergestellt. Der kommerzielle Durchbruch ist deshalb bisher, hauptsächlich infolge der mangelnden Reproduzierbarkeit der Elektrodeneigenschaften und der Verfügbarkeit einfacher elektronischer Geräte ausgeblieben.
Es war daher Ziel dieser Arbeit, durch industrienahe Herstellungsverfahren Graphitelektroden mit reproduzierbaren Eigenschaften zu entwickeln und diese auf ihre Eignung für den quantitativen Nachweis bioaktiver Stoffe zu erproben. Dazu waren Verfahrensschritte zu optimieren, die es erlauben, diese siebgedruckten Graphitelektroden reproduzierbar und kostengünstig zu fertigen und sie auf verschiedene Weise, z.B. durch halbleitende Polymere und nanoskalige Metalle zu modifizieren.
Neben den Neurotransmittern enthalten Körperflüssigkeiten unter anderem Ascorbinsäure und Harnsäure in hohen Konzentrationen. Daher waren zunächst Modellanalyten unter Verwendung dieser Stoffe herzustellen. Die voltammetrischen Methoden, wie die zyklische Voltammetrie (CV), die Differentielle Puls-Voltammetrie (DPV) und die Square-Wave-Voltammetrie (SWV) sollten auf ihre Eignung zum Nachweis der bioaktiven Substanzen erprobt werden. Schließlich waren die Elektroden in realen Analyten zu testen. Insgesamt konnte in der vorliegenden Arbeit gezeigt werden, dass ausgewählte Neurotransmitter, Ascorbinsäure und Harnsäure sich mit differentiellen voltammetrischen Verfahren an industrienah hergestellten modifizierten Dickschichtelektroden bestimmen lassen. Es ist erstmalig gelungen, eine modifizierte Dickschichtelektrode zu entwickeln, mit der es möglich ist, Katecholamine unabhängig von Ascorbinsäure (3 mM) und Harnsäure (2 mM) quantitativ nachzuweisen. Damit eröffnen sich neue Wege für den Einsatz von elektrochemischen Sensoren für die einfache Bestimmung der Neurotransmitter vor Ort.
Die beschriebenen modifizierten Dickschichtelektroden sind ohne Verlust an elektrochemischer Aktivität an der Luft oder im Grundelektrolyten monatelang lagerfähig. Die Elektroden lassen sich im Gegensatz zu den in der Literatur beschriebenen Elektroden mit Einzelfertigung kostengünstig in großer Stückzahl mit hoher Reproduzierbarkeit herstellen.:Inhaltsverzeichnis I
Abkürzungen V
1 Einleitung und Zielsetzung der Arbeit 1
2 Theoretischer Teil 5
2.1 Elektrochemische Verfahren in der Analytik 5
Klassifizierung elektroanalytischer Methoden 5
2.1.1 Voltammetrie 5
Cyclovoltammetrie (CV) 6
Differential-Puls-Voltammetrie (DPV) 9
Square-Wave-Voltammetrie (SWV) 10
2.1.2 Chronocoulometrie (ChrC) 11
2.1.3 Impedanzmessung (EIS) 12
2.1.4 Elektrochemische Quarzmikrowaage (EQCM) 14
2.2 Poly-3,4-Ethylendioxythiophen, ein leitfähiges Polymer 19
2.2.1 Leitfähige Polymere 19
2.2.2 Das Poly-3,4-ethylendioxythiophen 20
Elektrochemische Synthese und Dotierung 20
2.3 Bioaktive Stoffe 24
2.3.1 Katecholamine 24
Dopamin 25
Noradrenalin und Adrenalin 25
Abnorme Konzentration der Katecholamine 25
2.3.2 Serotonin 26
2.3.3 Interaktion von Katecholaminen und Serotonin 26
2.3.4 Ascorbinsäure und Harnsäure 27
2.3.5 Elektrochemisches Verhalten der bioaktiven Stoffe 28
Katecholamine 28
Serotonin 30
Ascorbinsäure 30
Harnsäure 30
3 Experimenteller Teil 32
3.1 Chemikalien 32
3.2 Lösungen 33
3.2.1 Ausgangslösungen 33
Grundelektrolyte 33
Lösungen der bioaktiven Stoffe 33
3.2.2 Lösungen für Elektrodenmodifizierungen 33
EDOT-haltige Lösungen 33
Neurotransmitter-Lösungen 34
HAuCl4-Lösungen 34
Goldkolloide 34
Eisenhexacyanoferrat(II)-Goldsäurehaltige Lösung 35
3.3 Elektrochemische Messmethoden 35
3.3.1 Voltammetrie, Chronocoulometrie und Impedanz 35
3.3.2 Elektrochemische Quarzmikrowaage 38
3.4 Elektroden und Präparation der Elektroden 39
3.4.1 Untersuchte Elektroden, deren Aktivierung und Konditionierung 39
3.4.3 Modifizierungen der Elektroden 41
Poly-3,4-Ethylendioxythiophen (PEDOT) 41
Goldnanopartikel 41
Komposite aus Goldnanopartikeln und Preußisch Blau (Au/PB) 42
Polymerfilme aus Monoamin-Neurotransmittern 42
3.5 Präparation der UP für Untersuchungen in realen Medien 43
3.6 Spektroskopische Methoden 43
4 Ergebnisse und Diskussion 45
4.1 Unmodifizierte Elektrodenoberflächen 45
4.1.1 Einfluss der Aktivierung der Elektrodenoberflächen auf das Messverhalten 45
4.1.2 Bestimmung bioaktiver Stoffe an unmodifizierten Elektroden 48
Ermittlung des Peakpotenzials 48
Messeffekte an Gold- und Graphitelektroden in Neurotransmitter-Lösungen hoher Konzentrationen 50
Bestimmung bioaktiver Stoffe im Gemisch 52
4.2 Au- und Au/PB-modifizierte Elektroden 54
4.2.1 Abscheidung 54
4.2.2 Untersuchungen bioaktiver Stoffe an Au-modifizierten Elektroden 56
4.3 PEDOT-modifizierte Elektroden 58
4.3.1 Abscheidungen der PEDOT-Schichten 58
CV-Abscheidungen der PEDOT-Schichten 59
ChrC-Abscheidungen der PEDOT-Schichten 62
4.3.2 Voruntersuchungen an PEDOT-modifizierten Elektroden 66
Ermittlung des optimalen Potenzialbereiches für voltammetrische Messungen an PEDOT-modifizierten Elektroden 66
Ermittlung der optimale PEDOT-Schichten für die Bestimmung bioaktiver Stoffe 68
Peakpotenziale bioaktiver Stoffe 71
Einfluss des pH-Wertes des Elektrolyten und der Scangeschwindigkeit auf voltammetrische Messsignale bioaktiver Stoffe 72
Einfluss der Messmethoden auf die Messsignale bioaktiver Stoffe an PEDOT-modifizierten Elektroden 74
4.3.3 Bestimmung bioaktiver Stoffe an PEDOT-modifizierten Elektroden 78
Bestimmung der Neurotransmitter (Dopamin, Adrenalin, Noradrenalin und Serotonin) 78
Bestimmung von Ascorbinsäure und Harnsäure 81
Bestimmung der Neurotransmitter mit Zusatz von Ascorbinsäure und Harnsäure 82
Stabiltität der PEDOT-modifizierten Elektroden 83
Vergleich der Ergebnisse an PEDOT-Elektroden mit Literaturangaben 84
4.3.4 Spektroskopische Untersuchungen der PEDOT-Oberflächen 85
4.3.5 Zusammenfassung der Ergebnisse an PEDOT-Elektroden 87
4.4 Au-PEDOT-modifizierte Elektroden 88
4.4.1 Abscheidungen der Goldnanopartikel auf PEDOT-Oberflächen 88
Abscheidung der Goldnanopartikel durch Adsorption aus Goldkolloiden 88
Abscheidung der Goldnanopartikel auf PEDOT-modifizierten Elektroden mittels Cyclovoltammetrie 92
4.4.2 Bestimmung bioaktiver Stoffe an Au-PEDOT-Elektroden 94
Peakpotenziale bioaktiver Stoffe an Au-PEDOT-Elektroden 94
Bestimmung von Neurotransmittern in 0,1 M Phosphatpufferlösungen 96
Bestimmung von Neurotransmittern mit Zusatz von Ascorbinsäure und Harnsäure 98
Bestimmung von Ascorbinsäure und Harnsäure 99
Stabilität der Sensitivitäten und Reproduzierbarkeit der Elektrodenherstellung 102
Vergleich der Ergebnisse an Au-PEDOT-Elektroden mit Literaturangaben 102
4.4.3 Zusammenfassung der Ergebnisse an Au-PEDOT-Elektroden 104
4.5 Polymonoamin-modifizierte Elektroden bzw. PEDOT-Elektroden 105
4.5.1 Abscheidungen der Polymerschichten aus Monoaminen an Graphitelektroden 106
4.5.2 Abscheidungen der Polymerschichten aus Monoaminen an PEDOT-Elektroden 106
CV-Abscheidung 106
SWV-Abscheidung 108
4.5.3 Bestimmung bioaktiver Stoffe an Polyserotonin-modifizierte PEDOT-Elektroden 111
Peakpotenziale bioaktiver Stoffe 111
Bestimmung der Neurotransmitter 112
Bestimmung von Ascorbinsäure und Harnsäure 114
Bestimmung der Neurotransmitter mit Zusatz von AS und HS 114
Bestimmung von Harnsäure in Gegenwart von Dopamin 116
4.5.4 Möglicher Einsatz der 5-HT-PEDOT-Elektroden als pH-Elektroden 117
4.5.5 Zusammenfassung der Ergebnisse an Polyserotonin-PEDOT-Elektroden 118
4.6 Bestimmung bioaktiver Stoffe in UM 119
4.6.1 Bestimmung von Harnsäure 119
Bestimmung von Harnsäure im Modellanalyten 119
Bestimmung von Harnsäure in präparierten UP 119
4.6.2 Bestimmung von Dopamin 120
DA-Bestimmung im Modellanalyten 120
Bestimmung von Dopamin in präparierten UP 121
5 Zusammenfassung und Ausblick 123
Zusammenfassung 123
Ausblick 126
Tabellenverzeichnis 127
Abbildungsverzeichnis 130
Anhang 138
Literaturverzeichnis 152
VERSICHERUNG 157

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:25783
Date30 September 2011
CreatorsTran, Thuy Nga
ContributorsGuth, Ulrich, Plieth, Waldfried, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds