Return to search

New Insights into Catalysis and Regulation of the Allosteric Enzyme Aspartate Transcarbamoylase

Thesis advisor: Evan R. Kantrowitz / The enzyme aspartate transcarbamoylase (ATCase) is an enzyme in the pyrimidine nucleotide biosynthetic pathway. It was once an attractive target for anti-proliferation drugs but has since become a teaching model due to kinetic properties such as cooperativity and allostery exhibited by the Escherichia coli form of the enzyme. ATCase from E. coli has been extensively studied over that last 60 years and is the textbook example of allosteric enzymes. Through this past research it is understood that ATCase is allosterically inhibited by CTP, the end product of pyrimidine biosynthesis, and allosterically activated by ATP, the end product of the parallel purine biosynthetic pathway. Part of the work discussed in this dissertation involves further understanding the catalytic properties of ATCase by examining an unregulated trimeric form from Bacillus subtilis, a bacterial ATCase that more closely resembles the mammalian form than E. coli ATCase. Through X-ray crystallography and molecular modeling, the complete catalytic cycle of B. subtilis ATCase was visualized, which provided new insights into the manifestation of properties such as cooperativity and allostery in forms of ATCase that are regulated. Most of the work described in the following chapters involves understanding allostery in E. coli ATCase. The work here progressively builds a new model of allostery through new X-ray structures of ATCase*NTP complexes. Throughout these studies it has been determined that the allosteric site is bigger than previously thought and that metal ions play a significant role in the kinetic response of the enzyme to nucleotide effectors. This work proves that what is known about ATCase regulation is inaccurate and that currently accepted, and taught, models of allostery are wrong. This new model of allostery for E. coli ATCase unifies all old and current data for ATCase regulation, and has clarified many previously unexplainable results. / Thesis (PhD) — Boston College, 2013. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_101935
Date January 2013
CreatorsCockrell, Gregory Mercer
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author, with all rights reserved, unless otherwise noted.

Page generated in 0.0022 seconds