Return to search

Balanced asphalt mix design and pavement distress predictive models based on machine learning

Traditional asphalt mix design procedures are empirical and need random and lengthy trials in a laboratory, which can cost much labor, material resources, and finance. The initiative (Material Genome initiative) was launched by President Obama to revitalize American manufacturing. To achieve the objective of the MGI, three major tools which are computational techniques, laboratory experiments, and data analytics methods are supposed to have interacted. Designing asphalt mixture with laboratory and computation simulation methods has developed in recent decades. With the development of data science, establishing a new design platform for asphalt mixture based on data-driven methods is urgent. A balanced mix design, defined as an asphalt mix design simultaneously considering the ability of asphalt mixture to resist pavement distress, such as rutting, cracking, IRI (international roughness index), etc., is still the trend of future asphalt mix design.
The service life of asphalt pavement mainly depends on the properties of the asphalt mixture. Whether asphalt mixture has good properties also depends on advanced asphalt mix design methods. Scientific mix design methods can improve engineering properties of asphalt mixture, further extending pavement life and preventing early distress of flexible pavement. Additionally, in traditional asphalt mix design procedures, the capability to resist pavement distress (rutting, IRI, and fatigue cracking) of a mixture is always evaluated based on laboratory performance tests (Hamburg wheel tracking device, Asphalt Pavement Analyzer, repeated flexural bending, etc.). However, there is an inevitable difference between laboratory tests and the real circumstance where asphalt mixture experiences because the pavement condition (traffic, climate, pavement structure) is varying and complex. The successful application examples of machine learning (ML) in all kinds of fields make it possible to establish the predictive models of pavement distress, with the inputs which contain asphalt concrete materials properties involved in the mix design process.
Therefore, this study utilized historical data acquired from laboratory records, the LTPP dataset, and the NCHRP 1-37A report, data analytics and processing methods, as well as ML models to establish pavement distress predictive models, and then developed an automated and balanced mix design procedure, further lying a foundation to achieve an MGI mix design in the future. Specifically, the main research content can be divided into three parts:1. Established ML models to capture the relationship between properties of the binder, aggregates properties, gradation, asphalt content (effective and absorbed asphalt content), gyration numbers, and mixture volumetric properties for developing cost-saving Superpave and Marshall mix design methods; 2. Developed pavement distress (rutting, IRI, and fatigue cracking) predictive models, based on the inputs of asphalt concrete properties, other pavement materials information, pavement structure, climate, and traffic; 3. Proposed and verified an intelligent and balanced asphalt mix design procedure by combining the mixture properties prediction module, pavement distress predictive models and criteria, and non-dominated Sorting genetic algorithm-Ⅱ (NSGA-Ⅱ). It was discovered determining total asphalt content through predicting effective and absorbed asphalt content indirectly with ML models was more accurate than predicting total asphalt content directly with ML models; Pavement distress predictive models can achieve better predictive results than the calibrated prediction models of Mechanistic-Empirical Pavement Design Guide (MEPDG); The design results for an actual project of surface asphalt course suggested that compared to the traditional ones, the asphalt contents of the 12.5 mm and 19 mm Nominal Maximum Aggregate Size (NMAS) mixtures designed by the automated mix design procedure drop by 7.6% and 13.2%, respectively; the percent passing 2.36 mm sieve of the two types of mixtures designed by the proposed mix design procedure fall by 17.8% and 10.3%, respectively. / Doctor of Philosophy / About 96% of roads are paved with asphalt mixture. Asphalt mixture consists of asphalt, aggregates, and additives. Asphalt mix design refers to the process to determine the proper proportion of aggregates, asphalt, and additives. Traditional asphalt mix design procedures in laboratories are empirical and cost much labor, material resources, and finance. Pavement distresses, for example, cracks are important indicators to assess pavement condition. With the development of data science, machine learning (ML) has been applied to various fields by predicting desired targets. The multi-objective optimization refers to determining the optimal solution of a multiple objectives problem. The study applied ML methods to predict asphalt mixture components' proportions and pavement distress with historical experimental data and pavement condition records from literature and an open-source database. Specifically, the main research content can be divided into three parts:1. Established ML models to predict the proportion of asphalt when aggregates are given; 2. Built ML models to predict pavement distress from pavement materials information, pavement structure, climate, and traffic; 3. Develop a digital asphalt mix design procedure by combining the pavement distress prediction models and a multi-objective optimization algorithm.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/111973
Date22 September 2022
CreatorsLiu, Jian
ContributorsCivil and Environmental Engineering, Wang, Linbing, Koutromanos, Ioannis, Shakiba, Maryam, Brand, Alexander S.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.002 seconds