Return to search

The EEG of the neonatal brain : classification of background activity

The brain requires a continuous supply of oxygen and nutrients, and even a short period of reduced oxygen supply can cause severe and lifelong consequences for the affected individual. The unborn baby is fairly robust, but there are of course limits also for these individuals. The mostsensitive and most important organ is the brain. When the brain is deprivedof oxygen, a process can start that ultimately may lead to the death of braincells and irreparable brain damage. This process has two phases; one more orless immediate and one delayed. There is a window of time of up to 24 hourswhere action can be taken to prevent the delayed secondary damage. One recently clinically available technique is to reduce the metabolism and thereby stop the secondary damage in the brain by cooling the baby.It is important to be able to quickly diagnose hypoxic injuries and to followthe development of the processes in the brain. For this, the electroencephalogram (EEG) is an important tool. The EEG is a voltage signal that originates within the brain and that can be recorded easily andnon-invasively at bedside. The signals are, however, highly complex and require special competence to interpret, a competence that typically is not available at the intensive care unit, and particularly not continuously day and night. This thesis addresses the problem of automatic classification ofneonatal EEG and proposes methods that would be possible to use in bedside monitoring equipment for neonatal intensive care units.The thesis is a compilation of six papers. The first four deal with the segmentation of pathological signals (burst suppression) from post-asphyctic full term newborn babies. These studies investigate the use of various classification techniques, using both supervised and unsupervised learning.In paper V the scope is widened to include both classification of pathologicalactivity versus activity found in healthy babies as well as application of thesegmentation methods on the parts of the EEG signal that are found to be of the pathological type. The use of genetic algorithms for feature selection isalso investigated. In paper VI the segmentation methods are applied onsignals from pre-term babies to investigate the impact of a certain medication on the brain.The results of this thesis demonstrate ways to improve the monitoring of the brain during intensive care of newborn babies. Hopefully it will someday be implemented in monitoring equipment and help to prevent permanent brain damage in post asphyctic babies.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hb-3533
Date January 2009
CreatorsLöfhede, Johan
PublisherHögskolan i Borås, Institutionen Ingenjörshögskolan, Göteborg : Chalmers University of Technology
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, monograph, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationSkrifter från Högskolan i Borås, 0280-381X ; 19, Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie, 0346-718X ; 3020

Page generated in 0.0025 seconds