Return to search

Chromatin assembly by CAF-1 during homologous recombination : a novel step of regulation / Nouveau mécanisme de régulation de la recombinaison homologue par le complexe d'assemblage des nucléosomes caf-1

La réplication des chromosomes est altérée par les facteurs endogènes et/ou exogènes qui perturbent la progression des fourches de réplication. Les cellules doivent donc coordonner la synthèse d’ADN avec des mécanismes assurant la stabilité et le rétablissement des fourches bloquées. La recombinaison homologue (RH) est un mécanisme universel qui permet la réparation de l’ADN et participe au maintien de la réplication des chromosomes. Néanmoins, les mécanismes qui régulent la RH, notamment la RH ectopique versus la RH allélique, restent mal compris. Un autre mécanisme essentiel assurant la stabilité des génomes est l’assemblage de l’ADN néo-synthétisé autour de nucléosomes, conduisant à la constitution de fibres chromatiniennes nécessaires à l’organisation structurale du matériel génétique. Chez Saccharomyces cerevisiae, des défauts d’assemblage de la chromatine conduisent à une instabilité des fourches de réplication et augmentent le taux de RH. Sachant que les chaperonnes d’histones jouent un rôle crucial durant l’assemblage de la chromatine, j'ai décidé de me concentrer sur le rôle de la chaperonne d’histones H3-H4 appelé Chromatin Assembly Factor 1 (CAF-1) dans les mécanismes de RH, chez Schizosaccharomyces pombe. En effet, la RH est associée à une étape de synthèse de l’ADN, et peu de choses sont connues sur l’assemblage de la chromatine au cours de cette synthèse. Mes résultats ont exclu un rôle de CAF-1 dans la recombinaison allelique et le maintien de la stabilité des fourches de réplication. Par contre, CAF-1 joue un rôle important dans les mécanismes de recombinaisons ectopique et dans la formation de réarrangements chromosomiques induits par des blocages de fourches. Mes données suggèrent un modèle selon lequel CAF-1 permet la stabilisation d’intermédiaires de recombinaison précoces (D-loop), via le dépôt de nucleosomes au cours de l’extension par polymérisation de ces intermédiaires. Ainsi CAF-1 neutralise la dissociation des intermédiaires de recombinaison précoces par l’ADN helicase Rqh1. CAF-1 ferait partie d'un équilibre qui règle la stabilité/dissociation des intermédiaires de recombinaison précoces. J'ai montré que le rôle de CAF-1 dans cet équilibre a une importance toute particulière pendant la recombinaison non-allelique, révélant ainsi un nouveau niveau de régulation des mécanismes de RH par l'assemblage de la chromatine. / The replication of chromosomes can be challenged by endogenous and environmental factors, interfering with the progression of replication forks. Therefore, cells have to coordinate DNA synthesis with mechanisms ensuring the stability and the recovery of halted forks. Homologous recombination (HR) is a universal mechanism that supports DNA repair and the robustness of DNA replication. Nonetheless, mechanisms regulating HR pathways, such as ectopic versus allelic recombination, remain poorly understood. Another essential pathway for genome stability is the wrapping of newly replicated DNA around nucleosomes, leading to the constitution of a chromatin fibre, which allows the structural organization of the genetic material. In Saccharomyces cerevisiae, deficiencies in chromatin assembly pathways lead to replication forks instability and consequent increase in the rate of HR. Histone chaperones play a crucial role during chromatin assembly, thus I decided to focus on the H3-H4 histone chaperone Chromatin Assembly Factor 1 (CAF-1), to study its role in HR processes in Schizosaccharomyces pombe. Indeed, HR includes a DNA synthesis step and little is known about the associated chromatin assembly. My data excluded a role for CAF-1 in allelic recombination and in the maintenance of forks stability. However, CAF-1 was found to play an important role during ectopic recombination, in promoting chromosomal rearrangements induced by halted replication forks. My data support a model according to which CAF-1 allows the stabilization of early recombination intermediates (D-loop), via nucleosome deposition during the elongation of these intermediates. Doing so, CAF-1 counteracts the dissociation of early recombination intermediates by the helicase Rqh1. Therefore, CAF-1 appears to be part of an equilibrium that regulates stability/dissociation of early steps of recombination events. Importantly, I found that the role of CAF-1 in this equilibrium is of particular importance during non-allelic recombination, revealing a novel regulation level of HR mechanisms and outcomes by chromatin assembly.

Identiferoai:union.ndltd.org:theses.fr/2012PA112385
Date14 December 2012
CreatorsPietrobon, Violena
ContributorsParis 11, Lambert, Sarah
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.0021 seconds