Return to search

New Statistical Methods and Computational Tools for Mining Big Data, with Applications in Plant Sciences

The purpose of this dissertation is to develop new statistical tools for mining big data in plant sciences. In particular, the dissertation consists of four inter-related projects to address various methodological and computational challenges in phylogenetic methods. Project 1 aims to systematically test different optimization tools and provide useful strategies to improve optimization in practice. Project 2 develops a new R package rPlant, which provides a friendly and convenient toolbox for users of iPlant. Project 3 presents a fast and effective group-screening method to identify important genetic factors in GWAS, with theoretical justifications and nice asymptotic properties. Project 4 develops a new statistical tool to identify gene-gene interactions, with the ability of handling the interactions between groups of covariates.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/613247
Date January 2016
CreatorsMichels, Kurt Andrew
ContributorsZhang, Hao Helen, Billheimer, David D., Kececioglu, John D., Merchant, Nirav C., Matasci, Naim, Zhang, Hao Helen
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0021 seconds