Return to search

Development and stability of IL-17-secreting T cells

Indiana University-Purdue University Indianapolis (IUPUI) / IL-17-producing T cells are critical to the development of pathogen and tumor immunity, but also contribute to the pathology of autoimmune diseases and allergic inflammation. CD8+ (Tc17) and CD4+ (Th17) IL-17-secreting T cells develop in response to a cytokine environment that activates Signal Transducer and Activator of Transcription (STAT) proteins, though the mechanisms underlying Tc17/Th17 development and stability are still unclear. In vivo, Tc17 cells clear vaccinia virus infection and acquire cytotoxic potential, that is independent of IL-17 production and the acquisition of IFN-γ-secreting potential, but partially dependent on Fas ligand, suggesting that Tc17-mediated vaccinia virus clearance is through cell killing independent of an acquired Tc1 phenotype. In contrast, memory Th cells and NKT cells display STAT4-dependent IL-23-induced IL-17 production that correlates with Il23r expression. IL-23 does not activate STAT4 nor do other STAT4-activating cytokines induce Il23r expression in these populations, suggesting a T cell-extrinsic role for STAT4 in mediating IL-23 responsiveness. Although IL-23 is important for the maintenance of IL-17-secreting T cells, it also promotes their instability, often resulting in a pathogenic Th1-like phenotype in vitro and in vivo. In vitro-derived Th17 cells are also flexible when cultured under polarizing conditions that promote Th2 or Th9 differentiation, adopting the respective effector programs, and decreasing IL-17 production. However, in models of allergic airway disease, Th17 cells do not secrete alternative cytokines nor adopt other effector programs, and remain stable IL-17-secretors. In contrast to Th1-biased pro-inflammatory environments that induce Th17 instability in vivo, during allergic inflammatory disease, Th17 cells are comparatively stable, and retain the potential to produce IL-17. Together these data document that the inflammatory environment has distinct effects on the stability of IL-17-secreting T cells in vivo.

Identiferoai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/5902
Date January 2014
CreatorsGlosson, Nicole L.
ContributorsKaplan, Mark H., Blum, Janice Sherry, 1957-, Yu, Andy, Harrington, Maureen A.
Source SetsIndiana University-Purdue University Indianapolis
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.0018 seconds