Return to search

Towards the Habitable Zone: Direct Imaging of Extrasolar Planets with the Magellan AO System

One of the most compelling scientific quests ever undertaken is the quest to find life in our Universe somewhere other than Earth. An important piece to this puzzle is finding and characterizing extrasolar planets. This effort, particularly the characterization step, requires the ability to directly image such planets. This is a challenging task - such planets are much fainter than their host stars. One of the major solutions to this problem is Adaptive Optics (AO), which allows us to correct the turbulence in the Earth's atmosphere, and thereby further the hunt for exoplanets with ground based telescopes. The Magellan Adaptive Optics system has recently obtained its first on-sky results at Las Campanas Observatory, marking a significant step forward in the development of high-resolution high-contrast ground-based direct imaging. MagAO includes a visible wavelength science camera, VisAO, which - for the first time - provides diffraction limited imaging, in long exposures, on a large filled-aperture (6.5 m) telescope. In this dissertation we report on the design, development, laboratory testing, and initial on-sky results of MagAO and VisAO, which include the first ground-based image of an exoplanet (beta Pictoris b) with a CCD. We also discuss some of the exciting science planned for this system now that it is operational. We close with an analysis of a new problem in direct imaging: planets orbiting their stars move fast enough in the habitable zone to limit our ability to detect them.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/301763
Date January 2013
CreatorsMales, Jared Robert
ContributorsClose, Laird M., Hinz, Philip M., Zaritsky, Dennis, Guyon, Olivier, Schneider, Glenn
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0024 seconds