Void galaxies, residing within the deepest underdensities of the Cosmic Web, present an ideal population for the study of galaxy formation and evolution in an environment undisturbed by the complex processes modifying galaxies in clusters and groups, and provide an observational test for theories of cosmological structure formation. We investigate the neutral hydrogen properties (i.e. content, morphology, kinematics) of void galaxies, both individually and systematically, using a combination of observations and simulations, to form a more complete understanding of the nature of these systems. We investigate in detail the H I morphology and kinematics of two void galaxies. One is an isolated polar disk galaxy in a diffuse cosmological wall situated between two voids. The considerable gas mass and apparent lack of stars in the polar disk, coupled with the general underdensity of the environment, supports recent theories of cold flow accretion as an alternate formation mechanism for polar disk galaxies. We also examine KK 246, the only confirmed galaxy located within the nearby Tully Void. It is a dwarf galaxy with an extremely extended H I disk and signs of an H I cloud with anomalous velocity. It also exhibits clear misalignment between the kinematical major and minor axes, and a general misalignment between the H I and optical major axes. The relative isolation and extreme underdense environment make these both very interesting cases for examining the role of gas accretion in galaxy evolution. To study void galaxies as a population, we have carefully selected a sample of 60 galaxies that reside in the deepest underdensities of geometrically identified voids within the SDSS. We have imaged this new Void Galaxy Survey in H I at the Westerbork Synthesis Radio Telescope with a typical resolution of 8 kpc, probing a volume of 1.2 Mpc and 12,000 km s^-1 surrounding each galaxy. We reach H I mass limits of 2 x 10^8 M_sun and column density sensitivities of 5 x 10^19 cm^-2. We find that the void galaxies are generally gas rich, low luminosity, blue disk galaxies, but identify three as early type galaxies. The void galaxy optical and H I properties are not unusual for their luminosity and morphology. The small scale clustering in the void is similar to that in higher density regions, and we identify 18 H I rich neighboring galaxies in the voids. Two of these are systems of three galaxies linearly aligned and joined by a H I bridge, suggestive of filamentary formation within the void. We find no population of H I rich low luminosity galaxies within the observed voids that are not close companions of the targeted sample. Finally, to put these observations in a theoretical context, we analyze a (120 h^-1 Mpc)^3 adaptive mesh refinement hydrodynamic simulation that contains a high resolution subvolume centered on a ~30 Mpc diameter void. We construct mock observations with ~1 kpc resolution of the stellar and gas properties of these systems which reproduce the range of colors and luminosities observed in the SDSS for nearby galaxies, however we find no strong trends with density. We also make predictions for a significant population of low luminosity (M_r = -14) dwarf galaxies that is preferentially located in low density regions and specifically in the void center.
Identifer | oai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/D8BV7PMR |
Date | January 2011 |
Creators | Kreckel, Kathryn Joyce |
Source Sets | Columbia University |
Language | English |
Detected Language | English |
Type | Theses |
Page generated in 0.0039 seconds