Return to search

Exploring the potentials of next-generation, wavelength-shifting, optical sensors for IceCube

The IceCube Neutrino Observatory has sensitivity to MeV electron antineutrinos from core-collapse supernovae through an excess of the detection rate over the background. Wavelength-shifting sensors have the potential to greatly increase photon collection making it a promising candidate for improving the measurement of the supernova neutrino light curve in IceCube-Gen2. For high-energy neutrino reconstruction, the competing effect of increased photon collection and the broader time distribution necessitate detailed simulations to determine the impact. In this thesis, we investigate the sensitivity gain caused by wavelength shifters in a future IceCube-Gen2 detector regarding the detection of faint modulations of the supernova neutrino lightcurve. Furthermore, we lay the groundwork for a future high-energy reconstruction through the implementation and integration of wavelength-shifting sensors into the IceCube simulation framework.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-521830
Date January 2023
CreatorsBeise, Jakob
PublisherUppsala universitet, Högenergifysik, Uppsala
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, monograph, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0016 seconds