Return to search

Laboratory astrophysics with magnetized laser-produced plasmas / Plasmas magnétisés produits par laser pour l'astrophysique de laboratoire

Nous présentons dans ce travail différentes configurations utilisées pour étudier des éxperiences, pertinentes d'un point de vue astrophysique, mettant en jeu des plasma produits par laser ainsi que des champs magnétiques intenses. les outils théoriques et numériques sont d'abord présentés avec la dérivation complète du modèle de magnétohydrodynamique (mhd) résistive à deux températures. nous décrivons aussi les nouveaux modules de physique implémentés au cours de cette thèse. la configuration de base utilisée pour notre travail consiste en une ou plusieurs cibles solides sur lesquelles un laser intense est envoyé dans le but de générer un plasma se propageant dans le vide. on montre que l'ajout d'un champ magnétique de plusieurs dizaines de teslas influence fortement la dynamique de ce plasma et que selon l'orientation initiale du champ, il est possible de générer différentes structures telles que des jets supersonic/superalfvenic ou encore des «crêpes» de plasma. par exemple, les jets ainsi produits sont caractérisés par des régimes tels que des lois d'échelles entre le système du laboratoire et le système astrophysique (jeunes étoiles connues sous le nom de t tauri) sont applicables. un sujet important et inédit traité dans cette thèse concerne la génération de chocs d'accrétion magnétisés en utilisant les jets mentionnés ci-dessus comme flots accrétant sur des cibles solides. nous mettons notamment l'accent, contrairement à la plupart des travaux précédents, sur la structure 3d de ces chocs et els instabilités présentes. pour chaque cas étudié, nous présentons des nouveaux résultats expérimentaux obtenus par notre collaboration sur le laser elfie du luli. / We present in this work different configurations used as a mean to study astrophysically-relevant (by scaling) experiments using laser-produced plasmas and strong magnetic fields. This work is a contribution to the relatively recent field known as high energy density laboratory astrophysics (hedla). The theoretical and numerical framework used in this this work is first introduced with a detailed derivation of the magnetohydrodynamic (mhd) model for bi-temperature and resistive plasmas. The three-dimensional mhd code gorgon and the new physical modules implemented during this thesis are presented. The basic setup studied here involve one or several solid slabs being used as targets for a joule-class laser. The expanding plasma thus produced is embedded in magnetic fields of strengths up to 40 t. Depending on the orientation of the field relative to the target surface, we show that the resulting plasma dynamic, relatively well described by ideal mhd, is strongly modified by the presence of the field. The first topic treated is related to the production, when the field is perpendicular to the target surface, of super-sonic/alfvenic jets relevant in the context of astrophysical jets observed around young star objects (t tauri stars). When the field is oriented parallel to the surface, we show that the configuration results in the formation of thin unstable plasma slabs. We also studied the possibility to generate magnetized accretion shocks in the laboratory and we detail the 3d structure obtained in this case. Alongise the numerical work, we present for each case mentioned previously, new experimental results obtained by the collaboration on the elfie laser facility (luli).

Identiferoai:union.ndltd.org:theses.fr/2017PA066310
Date26 September 2017
CreatorsKhiar, Benjamin
ContributorsParis 6, Ciardi, Andrea
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds