Return to search

Flow and nutrient transport problems in rotating bioreactor systems

Motivated by applications in tissue engineering, this thesis is concerned with the flow through and around a free-moving porous tissue construct (TC) within a high-aspect-ratio vessel (HARV) bioreactor. We formalise and extend various results for flow within a Hele-Shaw cell containing a porous obstacle. We also consider the impact of the flow on related nutrient transport problems. The HARV bioreactor is a cylinder with circular cross-section which rotates about its axis at a constant rate, and is filled with a nutrient-rich culture medium. The porous TC is modelled as a rigid porous cylinder with circular cross-section and is fully saturated with the fluid. We formulate the flow problem for a porous TC (governed by Darcy's equations) within a HARV bioreactor (governed by the Navier-Stokes equations). We couple the two regions via appropriate interfacial conditions which are derived by consideration of the intricate boundary-layer structure close to the TC surface. By exploiting various small parameters, we simplify the system of equations by performing an asymptotic analysis, and investigate the resulting system for the flow due to a prescribed TC motion. The motion of the TC is determined by analysis of the force and torque acting upon it, and the resulting equations of motion (which are coupled to the flow) are investigated. The short-time TC behaviour is periodic, but we are able to study the long-time drift from this periodic solution by considering the effect of inertia using a multiple-scale analysis. We find that, contrary to received wisdom, inertia affects TC drift on a similar timescale to tissue growth. Finally, we consider the advection of nutrient through the bioreactor and TC, and investigate the problem of nutrient advection-diffusion for a simplified model involving nutrient uptake.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:711710
Date January 2014
CreatorsDalwadi, Mohit
ContributorsChapman, S. J. ; Oliver, J. M. ; Waters, S. L.
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://ora.ox.ac.uk/objects/uuid:1d7298b7-cdf5-4240-a79c-b7b69f662c1a

Page generated in 0.002 seconds