Return to search

Leading Order Asymptotics of a Multi-Matrix Partition Function for Colored Triangulations

We study the leading order asymptotics of a Random Matrix theory partition function related to colored triangulations. This partition function comes from a three Hermitian matrix model that has been introduced in the physics literature. We provide a detailed and precise description of the combinatorial objects that the partition function counts that has not appeared previously in the literature. We also provide a general framework for studying the leading order asymptotics of an N dimensional integral that one encounters studying the partition function of colored triangulations. The results are obtained by generalizing well know results for integrals coming from Hermitian matrix models with only one matrix that give the leading order asymptiotics in terms of a finite dimensional variational problem. We apply these results to the partition function for colored triangulations to show that the minimizing density of the variational problem is unique, and agrees with the one proposed in the physics literature. This provides the first complete mathematically rigorous description of the leading order asymptotics of this matrix model for colored triangulations.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/293410
Date January 2013
CreatorsAcosta Jaramillo, Enrique
ContributorsMcLaughlin, Kenneth D. T-R., Ercolani, Nicholas M., Flaschka, Hermann, Kennedy, Thomas G., McLaughlin, Kenneth D. T-R.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0019 seconds