<p style="text-align: justify;">In this doctoral dissertation several integral transforms are discussed.The first one is the Short time Fourier transform (STFT). We present continuity theorems for the STFT and its adjoint on the test function space <em>K</em><sub>1</sub>(ℝ<sup>n</sup>) and the topological tensor product <em>K</em><sub>1</sub>(ℝ<sup>n</sup>) ⊗ <em>U</em>(<strong>ℂ</strong><sup>n</sup>), where <em>U</em>(<strong>ℂ</strong><sup>n</sup>) is the space of entirerapidly decreasing functions in any horizontal band of <strong>ℂ</strong><sup>n</sup>. We then use such continuity results to develop a framework for the STFT on K'<sub>1</sub>(ℝ<sup>n</sup>). Also, we devote one section to the characterization of <em>K</em>’<sub>1</sub>(ℝ<sup>n</sup>) and related spaces via modulation spaces. We also obtain various Tauberian theorems for the short-time Fourier transform.</p><p style="text-align: justify;">Part of the thesis is dedicated to the ridgelet and the Radon transform. We define and study the ridgelet transform of (Lizorkin) distributions and we show that the ridgelet transform and the ridgelet synthesis operator can be extended as continuous mappings <em>R</em><sub><em>ψ </em></sub>: <em>S</em>’<sub>0</sub>(ℝ<sup>n</sup>) → <em>S</em>’(<strong>Y</strong><sup>n+1</sup>) and <em>R<sup>t</sup></em><sub><span style="vertical-align: sub;">ψ</span></sub>: <em>S</em>’(<strong>Y</strong><sup>n+1</sup>) → <em>S</em>’<sub>0</sub>(ℝ<sup>n</sup>). We then use our results to develop a distributional framework for the ridgelet transform that is, we treat the ridgelet transform on <em>S</em>’<sub>0</sub>(ℝ<sup>n</sup>) via a duality approach. Then, the continuity theorems for the ridgelet transform are applied to discuss the continuity of the Radon transform on these spaces and their duals. Finally, we deal with some Abelian and Tauberian theorems relating the quasiasymptotic behavior of distributions with the quasiasymptotics of the its Radon and ridgelet transform.</p><p style="text-align: justify;">The last chapter is dedicated to the MRA of M-exponential distributions. We study the convergence of multiresolution expansions in various test function and distribution spaces and we discuss the pointwise convergence of multiresolution expansions to the distributional point values of a distribution. We also provide a characterization of the quasiasymptotic behavior in terms of multiresolution expansions and give an MRA sufficient condition for the existence of α-density points of positive measures.</p> / <p>U ovoj doktorskoj disertaciji razmotreno je nekoliko integralnih transformacija. Prva je short time Fourier transform (STFT). Date su i dokazane teoreme o neprekidnosti STFT i njena sinteza na prostoru test funkcije <em>K</em><sub>1</sub>(ℝ<sup>n</sup>) i na prostoru <em>K</em><sub>1</sub>(ℝ<sup>n</sup>) ⊗ <em>U</em>(ℂ<sup>n</sup>), gde je <em>U</em>(ℂ<sup>n</sup>) prostor od celih brzo opadajućih funkcija u proizvoljnom horizontalnom opsegu na ℂ<sup>n</sup>. Onda, ovi rezultati neprekidnosti su iskorišteni za razvijanje teorije STFT na prostoru <em>K</em>’<sub>1</sub>(ℝ<sup>n</sup>). Jedno poglavlje je posvećeno karakterizaciji <em>K</em>’<sub>1</sub>(ℝ<sup>n</sup>) sa srodnih modulaciskih prostora. Dokazani su i različiti Tauberovi rezultata za STFT. Deo teze je posvećen na ridglet i Radon transformacije. Ridgelet transformacija je definisana na (Lizorkin) distribucije i pokazano je da ridgelet transformacija i njen operator sinteze mogu da se prošire kako neprekidna preslikava <em>R</em><sub>ψ</sub> : <em>S</em>’<sub>0</sub>(ℝ<sup>n</sup>) → <em>S</em>’(<strong>Y</strong><sup>n+1</sup>) and <em>R</em><sup>t</sup><sub>Ψ</sub>: <em>S</em>’(<strong>Y</strong><sup>n+1</sup>) → <em>S</em>’<sub>0</sub>(ℝ<sup>n</sup>). Ridgelet transformacija na <em>S</em>’<sub>0</sub>(ℝ<sup>n</sup>) je data preko dualnog pristupa. Naše teoreme neprekidnosti ridgelet transformacije su primenjene u dokazivanju neprekidnosti Radonove transformacije na Lizorkin test prostorima i njihovim dualima. Na kraju, dajemo Abelovih i Tauberovih teorema koji daju veze izmedju kvaziasimptotike distribucija i kvaziasimptotike rigdelet i Radonovog transfomaciju.<br />Zadnje poglavje je posveceno multirezolucijskog analizu M - eksponencijalnih distrubucije. Proucavamo konvergenciju multirezolucijkog razvoja u razlicitih prostori test funkcije i distribucije i razmotrena je tackasta konvergencija multirezolucijkog razvoju u tacku u distributivnog smislu. Obezbedjena je i karakterizacija kvaziasimptotike u pogled multirezolucijskog razvoju i dat dovoljni uslov za postojanje α-tacka gustine za pozitivne mere.</p>
Identifer | oai:union.ndltd.org:uns.ac.rs/oai:CRISUNS:(BISIS)87772 |
Date | 29 August 2014 |
Creators | Kostadinova Sanja |
Contributors | Pilipović Stevan, Vindas Jasson, Perišić Dušanka, Nedeljkov Marko, Saneva Hadži-Velkova Katerina |
Publisher | Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, University of Novi Sad, Faculty of Sciences at Novi Sad |
Source Sets | University of Novi Sad |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0023 seconds