Cette thèse est articulée autour de deux facettes de l'étude des équations auxdérivées partielles. Dans une première partie, on étudie la stabilité des solutionspériodiques pour des lois de conservation. On démontre d'abord la stabilité asymptotiquedans L1 des solutions périodiques de lois de conservation scalaires et inhomogènes.On montre ensuite un résultat de stabilité structurelle des roll-waves. Plusprécisément, on montre que les solutions périodiques d'un système hyperbolique sansviscosité sont limites des solutions du problème avec viscosité, quand le terme deviscosité tend vers 0. Dans une deuxième partie, on s'intéresse à un système d'équationsaux dérivées partielles issu de la biologie : le modèle de Patlak-Keller-Segelen dimension 2 ; il décrit les phénomènes de chimiotactisme. Pour ce modèle, onconstruit un schéma de type volume fini, ce qui permet d'approcher la solution touten gardant certaines propriétés du système : positivité, conservation de la masse,estimation d'énergie.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00845883 |
Date | 24 June 2010 |
Creators | Le Blanc, Valérie |
Publisher | Université Claude Bernard - Lyon I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0015 seconds