Return to search

Low-power circuit design using adiabatic and asynchronous techniques.

So Pui Tak. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references. / Abstracts in English and Chinese. / Abstract --- p.ii / Acknowledgement --- p.v / Table of Contents --- p.vi / List of Figures --- p.ix / List of Tables --- p.xii / Chapter Chapter 1 --- Introduction --- p.11 / Chapter 1.1 --- Overview --- p.1-1 / Chapter 1.1 --- Power Consumption in Conventional CMOS circuit --- p.1-1 / Chapter 1.2 --- Power Consumption in Synchronous Circuit --- p.1-6 / Chapter 1.4 --- Objectives --- p.1-7 / Chapter 1.5 --- Thesis Outline --- p.1-8 / Chapter Chapter 2 --- Background Theory --- p.2-1 / Chapter 2.1 --- Introduction --- p.2-1 / Chapter 2.2 --- Definition of Adiabatic Principle --- p.2-1 / Chapter 2.3 --- Overview of Adiabatic Circuit --- p.2-3 / Chapter 2.4 --- Asynchro nous Circuits --- p.2-7 / Chapter Chapter 3 --- Adiabatic Circuit usingRVS --- p.3-1 / Chapter 3.1 --- Introduction --- p.3-1 / Chapter 3.2 --- Architecture --- p.3-2 / Chapter 3.3 --- Ramp Voltage Supply Generator --- p.3-4 / Chapter 3.4 --- Circuit Evaluation --- p.3-7 / Chapter 3.5 --- Simulation Results --- p.3-8 / Chapter 3.4 --- Experimental Results --- p.3-9 / Chapter Chapter 4 --- Asynchronous Circuit Technique --- p.4-1 / Chapter 4.1 --- Introduction --- p.4-1 / Chapter 4.2 --- Architecture --- p.4-1 / Chapter 4.2.1 --- Muller Distributor Block Design --- p.4-2 / Chapter 4.2.2 --- Delay Block Design --- p.4-4 / Chapter Chapter 5 --- Adiabatic -Asynchronous Multiplier --- p.5-1 / Chapter 5.1 --- Introduction --- p.5-1 / Chapter 5.2 --- Combination of Adiabatic and Asynchronous Techniques. --- p.5-1 / Chapter 5.3 --- Oscillator Block Design --- p.5-3 / Chapter 5.4 --- Multiplier Architecture --- p.5-6 / Chapter Chapter 6 --- Layout Consideration --- p.6-1 / Chapter 6.1 --- Introduction --- p.6-1 / Chapter 6.2 --- Floorplanning --- p.6-1 / Chapter 6.3 --- Routing Channels --- p.6-2 / Chapter 6.3 --- Power Supply --- p.6-4 / Chapter 6.4 --- Input Protection Circuitry --- p.6-5 / Chapter 6.5 --- Die Micrographs of the Chip --- p.6-7 / Chapter Chapter 7 --- Simulation Results --- p.7-1 / Chapter 7.1 --- Introduction --- p.7-1 / Chapter 7.2 --- Muller Distributor Control Signal --- p.7-1 / Chapter 7.3 --- Power Consumption --- p.7-6 / Chapter 7.3.1 --- Synchronous Multiplier --- p.7-6 / Chapter 7.3.2 --- AAT Multiplier --- p.7-7 / Chapter 7.3.3 --- Power Comparison --- p.7-8 / Chapter Chapter 8 --- Measurement Results --- p.8-1 / Chapter 8.1 --- Introduction --- p.8-1 / Chapter 8.2 --- Experimental Setup --- p.8-2 / Chapter 8.3 --- Measurement Results --- p.8-6 / Chapter Chapter 9 --- Conclusion --- p.9-1 / Chapter 9.1 --- Contributions --- p.9-1 / Chapter Chapter 10 --- Bibliography --- p.10-1 / Appendix I Building Blocks --- p.1 / Appendix II Simulated Waveform --- p.7 / Appendix III Measured Waveform --- p.8 / Appendix IV Pin List --- p.9

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_325198
Date January 2005
ContributorsSo, Pui Tak., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, 1 v. (various pagings) : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0022 seconds