Return to search

Biochemical and physiological studies of Arabidopsis thaliana Diacylglycerol Kinase 7 (AtDGK7)

A family of diacylglycerol kinases (DGK) phosphorylates the substrate diacylglycerol (DAG) to generate phosphatidic acid (PA) . Both molecules, DAG and PA, are involved in signal transduction pathways. In the model plant Arabidopsis thaliana, seven candidate genes (named AtDGK1 to AtDGK7) code for putative DGK isoforms. Here I report the molecular cloning and characterization of AtDGK7. Biochemical, molecular and physiological experiments of AtDGK7 and their corresponding enzyme are analyzed.
Information from Genevestigator says that AtDGK7 gene is expressed in seedlings and adult Arabidopsis plants, especially in flowers. The AtDGK7 gene encodes the smallest functional DGK predicted in higher plants; but also, has an alternative coding sequence containing an extended AtDGK7 open reading frame, confirmed by PCR and submitted to the GenBank database (under the accession number DQ350135). The new cDNA has an extension of 439 nucleotides coding for 118 additional amino acids The former AtDGK7 enzyme has a predicted molecular mass of ~41 kDa and its activity is affected by pH and detergents. The DGK inhibitor R59022 also affects AtDGK7 activity, although at higher concentrations (i.e. IC50 ~380 µM). The AtDGK7 enzyme also shows a Michaelis-Menten type saturation curve for 1,2-DOG. Calculated Km and Vmax were 36 µM 1,2-DOG and 0.18 pmol PA min-1 mg of protein-1, respectively, under the assay conditions. Former protein AtDGK7 are able to phosphorylate different DAG analogs that are typically found in plants.
The new deduced AtDGK7 protein harbors the catalytic DGKc and accessory domains DGKa, instead the truncated one as the former AtDGK7 protein (Gomez-Merino et al., 2005). / Wachstum und Entwicklung sind die Kennzeichen lebender Systeme. Diese Prozesse unterliegen einer strengen Regulation im Organismus. Diacylglycerol (DAG) und Phosphatidsäure (PA) sind wesentliche Elemente in der Signalübertragung in Organismen. In Säugetieren kann DAG auf drei verschiedenen Wegen metabolisiert werden, die Entstehung von PA durch Phosphorylierung der freien Hydroxyl-Gruppe von DAG ist jedoch der am häufigsten vorkommende Stoffwechselweg. Die enzymatische Umsetzung dieser Reaktion wird von der Familie der Diacylglycerol-Kinasen (DGKs) katalysiert. Molekulare und biochemische Untersuchungen konnten die Anwesenheit von DGKs in Drosophila melanogaster, Arabidopsis thaliana und jüngst auch in Dictyostelium discoideum zeigen. In der vorliegenden Arbeit wird die Klonierung und Charakterisierung von AtDGK7 aus Arabidopsis thaliana präsentiert, einem Vertreter des pflanzlichen DGK-Clusters II. Das Transkript von AtDGK7 findet sich in der gesamten Pflanze, jedoch sind die Transkriptmengen in Blüten und jungem Gewebe stark erhöht. Rekombinant hergestelltes AtDGK7 ist katalytisch aktiv und akzeptiert DAG-ähnliche Moleküle mit mindestens einer ungesättigten Fettsäure als bevorzugtes Substrat. AtDGK2, ein weiteres Mitglied der DGK-Familie, und AtDGK7 metabolisieren Substrate, welche in Pflanzen physiologisch relevant sind. Das als DGK-Inhibitor beschriebene Molekül 6-{2-{4-[(4-fluorophenyl)phenylmethylene]-1-piperidinyl}ethyl}-7-methyl-5H-thiazolo(3,2-a)pyrimidine-5-one (R59022) inhibiert bei Konzentrationen von 50-100 µM rekombinant hergestelltes AtDGK2 in vitro. In ähnlichen Konzentrationen eingesetzt modifiziert R59022 das Wurzelwachstum. Dies weist darauf hin, dass DGKs in Entwicklungsprozessen eine Rolle spielen. In in vitro Experimenten wurde AtDGK7 von R59022 allerdings erst in Konzentrationen über 100 µM inhibiert. Ferner wird in der vorliegenden Arbeit die erfolgreiche Klonierung einer cDNA beschrieben, die für AtDGK7 aus A. thaliana kodiert und welche im Vergleich zu der bereits bekannten cDNA um 439 bp länger ist. Expressionsanalysen mit Hilfe eines Promotor-ß-glucuronidase (GUS) Fusions-Produktes zeigten die Aktivität von AtDGK7 in vielen Geweben, vor allem aber in Schließzellen, im Konnektiv-Gewebe der Antheren, sowie besonders in den Spitzen der Seitenwurzeln. Physiologische Untersuchungen unter abiotischem Stress (Verwendung verschiedener Konzentrationen von Stickstoff, Saccharose, Auxin und Inhibitoren von Auxin-Transportern) wurden mit AtDGK7 T-DNA-Insertionslinien sowie mit den Promotor-GUS-Linien durchgeführt. AtDGK7 T-DNA-Insertionslinien zeigten eine starke Inhibierung des Seitenwurzel-Wachstums unter limitierenden Stickstoff- und/oder Saccharose-Konzentrationen. In einigen der T-DNA-Insertionslinien inhibierte die Zugabe eines Inhibitors für Auxin-Transport (TIBA; 2,3,5-triiodobenzoic acid) die Bildung von Haupt- und Seitenwurzeln fast vollständig. Die Inhibition des Wurzelwachstums in den T-DNA-Insertionslinien konnte teilweise durch die Zugabe von 50nM NAA (α-naphtalene acetic acid) revertiert werden.
Aus den vorliegenden Ergebnissen wird die Hypothese abgeleitet, dass AtDGK7 im Zusammenspiel mit Auxin in Signaltransduktionsprozessen eine Rolle spielt, welche das Wachstum und die Entwicklung in Pflanzen regulieren.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:1372
Date January 2006
CreatorsArana-Ceballos, Fernando Alberto
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Biochemie und Biologie
Source SetsPotsdam University
LanguageEnglish
Detected LanguageGerman
TypeText.Thesis.Doctoral
Formatapplication/pdf
Rightshttp://opus.kobv.de/ubp/doku/urheberrecht.php

Page generated in 0.0028 seconds