Les couplages sont des outils mathématiques introduits par André Weil en 1948. Ils sont un sujet très en vogue depuis une dizaine d'années en cryptographie asymétrique. Ils permettent en effet de réaliser des opérations cryptographiques impossible à réaliser simplement autrement tel que la signature courte et la cryptographie basée sur l'identité. Ces dernières années, le calcul des couplages est devenu plus facile grâce à l'introduction de nouvelles méthodes de calculs mathématiques particulièrement efficaces sur les courbes elliptiques dites les courbes bien adaptées aux couplages. Aujourd'hui, nous sommes au stade de transfert de cette technologie, de la théorie vers la mise en œuvre pratique, sur des composants électroniques. Ce transfert soulève de nombreuses problématiques qui s'avèrent difficile à surmonter à cause de la différence de culture scientifique entre mathématiciens et micro-électroniciens. Dans le présent document, en premier lieu, nous avons étudié le problème de l'implémentation du couplage dans des environnements restreints. En effet, le calcul du couplage de Tate, ou aussi de l'une de ses variantes, nécessite plusieurs variables pour être implémenté, par conséquent, il nécessite une bonne partie de la mémoire du composant électronique sur lequel nous souhaitons implémenter un tel couplage.Dans ce contexte, en faisant des optimisations mathématiques, nous avons pu implémenté ces couplages dans des environnements retreints. Le deuxième problème que nous avons traité dans cette thèse est celui de la sécurité des protocoles cryptographiques basés sur les couplages. Dans ce contexte, puisque les couplages sur les courbes elliptiques sont censés d'être matériellement attaqués, nous devons le protéger contre ces attaques. Nous avons étudié les attaques sur les couplages et nous avons proposé une contre-mesure. / Les couplages sont des outils mathématiques introduits par André Weil en 1948. Ils sont un sujet très en vogue depuis une dizaine d'années en cryptographie asymétrique. Ils permettent en effet de réaliser des opérations cryptographiques impossible à réaliser simplement autrement tel que la signature courte et la cryptographie basée sur l'identité. Ces dernières années, le calcul des couplages est devenu plus facile grâce à l'introduction de nouvelles méthodes de calculs mathématiques particulièrement efficaces sur les courbes elliptiques dites les courbes bien adaptées aux couplages. Aujourd'hui, nous sommes au stade de transfert de cette technologie, de la théorie vers la mise en œuvre pratique, sur des composants électroniques. Ce transfert soulève de nombreuses problématiques qui s'avèrent difficile à surmonter à cause de la différence de culture scientifique entre mathématiciens et micro-électroniciens. Dans le présent document, en premier lieu, nous avons étudié le problème de l'implémentation du couplage dans des environnements restreints. En effet, le calcul du couplage de Tate, ou aussi de l'une de ses variantes, nécessite plusieurs variables pour être implémenté, par conséquent, il nécessite une bonne partie de la mémoire du composant électronique sur lequel nous souhaitons implémenter un tel couplage.Dans ce contexte, en faisant des optimisations mathématiques, nous avons pu implémenté ces couplages dans des environnements retreints. Le deuxième problème que nous avons traité dans cette thèse est celui de la sécurité des protocoles cryptographiques basés sur les couplages. Dans ce contexte, puisque les couplages sur les courbes elliptiques sont censés d'être matériellement attaqués, nous devons le protéger contre ces attaques. Nous avons étudié les attaques sur les couplages et nous avons proposé une contre-mesure.
Identifer | oai:union.ndltd.org:theses.fr/2016REN1S081 |
Date | 16 December 2016 |
Creators | Ghammam, Loubna |
Contributors | Rennes 1, Université de Monastir (Tunisie), Duquesne, Sylvain, Ben Abdelghani, Leila |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds