Return to search

Numerical experiments on entrainment, mixing and their effect on cloud dropsize distributions in a cumulus cloud

Entrainment, extreme inhomogeneous mixing, in the presence of wind shear, and their effect on cloud droplet spectra are investigated. A dynamical model in conjunction with a microphysical model designed to predict evolution of cloud droplet spectra, is employed to perform a two-dimensional simulation of a small nonprecipitating cumulus cloud in the presence of wind shear. / Results show that vortex circulations and penetrative downdrafts are responsible for entrainment of clear air into the cloud structure. Entrainment and mixing are more severe on the downshear side of the cloud leading to a more fragmented structure and often to total dissipation of cloudy air rather than partial dilution as is the case on the upshear side. Mixing followed by uplifting leads to fresh activation of cloud droplets and results in multimodal spectra. In areas where mixing has occurred, the spectra exhibit smaller average radius and larger standard deviation.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.61085
Date January 1992
CreatorsVaillancourt, Paul
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Meteorology.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001284270, proquestno: AAIMM74684, Theses scanned by UMI/ProQuest.

Page generated in 0.0018 seconds