Return to search

Numerical prediction and potential vorticity diagnosis of extratropical cyclones

By combining numerical simulations with different diagnostic tools, this thesis examines the various aspects of two explosively deepening cyclones--the superstorm of March 12-14 1993 and a storm that occurred during the Intensive Observation Period 14 (IOP-14) of the Canadian Atlantic Storm Program (CASP). Using conventional observations, the general aspects of the storms are documented and the dynamical and physical mechanisms are discussed. Then the life cycles are simulated with the Canadian Regional Finite-Element model. To improve the model initial conditions, a methodology is proposed on the basis of potential vorticity thinking, and is tested to be successful in the simulation of the March 1993 superstorm. Using the successful simulations as control runs, a series of numerical sensitivity experiments are conducted to study the impacts of model physics on the development of the two rapidly deepening cyclones. / The deepening mechanisms of both storms are examined within the context of PV thinking, i.e., using piecewise potential vorticity inversion diagnostics. In both cases, the upper-level PV anomalies contribute the most to the surface cyclone, followed by the lower-level thermal anomalies and diabatic heating related moist PV anomaly. It is found that a favorable phase tilt between the upper- and lower-level PV anomalies allows a mutual interaction between them, in which the circulations associated with the upper-level anomalies enhance the lower-level anomalies, which in turn feedback positively into the upper-level PV anomalies. In addition to the vertical interactions, there also exist lateral interactions between the upper-level PV anomalies for the March 1993 superstorm. The upper-level PV features (troughs) are isolated with the piecewise PV inversion. By removing or changing the intensity of the trough in the initial conditions, the RFE model is integrated to examine the impact of each trough and its interaction with the other trough on the superstorm development.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.42058
Date January 1996
CreatorsHuo, Zonghui.
ContributorsZhang, Da-Lin (advisor), Gyakuin, John (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Atmospheric and Oceanic Sciences.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001557299, proquestno: NQ29963, Theses scanned by UMI/ProQuest.

Page generated in 0.002 seconds