Return to search

Modeling the Martian Atmosphere at Potential Landing Sites and Regions of Notable Topography

Since the 1960?s several successful missions have been sent to Mars to gain a better understanding of the planet. In 2009, the Mars Science Laboratory (MSL) mission is scheduled to launch as part of the National Aeronautics and Space Administration (NASA) Mars Exploration Program. To assure the safety of this mission, an understanding of the Martian atmosphere is necessary. This is the first mission that may determine the landing site based on weather conditions. As such, potential landing sites at Terby Crater, Melas Chasma, Gale Crater, and Nili Fossae Trough were studied. Due to limited observations of Mars, the Planetary Weather Research and Forecast (WRF) Mars general circulation model was used to represent the Martian atmosphere. Model validation was conducted against Viking Lander 1, Viking Lander 2, and Mars Pathfinder data and showed that the Planetary WRF model was able to reasonably represent the Martian atmosphere. This research is divided into two parts. The first part focuses on density, temperature, and wind profiles at each potential landing site. These profiles are used to determine the amount of variability engineers must account for in the spacecraft design specifications. All profile deviations were within the MSL design specifications. The largest deviations occurred at Terby Crater while the smallest deviations occurred at Nili Fossae Trough. It appears that the large topographic features of Hellas Basin and Valles Marineris affect the local airflow patterns around Terby Crater and Melas Chasma. The second part focuses on these topographically-forced atmospheric perturbations using two of the largest features on Mars, Hellas Basin and Olympus Mons. Vertically propagating waves were generated over Olympus Mons during the night, while a strong daytime convective boundary layer and diabatic heating plume occurred during the day. Hellas Basin was dominated by cyclonic motion throughout the night and vertically propagating waves along the western edge of the basin during the day. In general, the Planetary WRF model compared to conventional mountain wave theory and was able to model topographic disturbances with coarse resolution. Limitations of the model are discussed.

Identiferoai:union.ndltd.org:NCSU/oai:NCSU:etd-10312007-172343
Date06 November 2007
CreatorsSilverman, Morgan Lindsay
ContributorsGary Lackmann, Lian Xie, Robert H. Tolson
PublisherNCSU
Source SetsNorth Carolina State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://www.lib.ncsu.edu/theses/available/etd-10312007-172343/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dis sertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to NC State University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0021 seconds