In the context of an increasing production of industrial toxic substances (TIC; Toxic Industrial Compound), the risk of accidental release of hazardous substances is growing in spite of the gradual implementation of safer technological processes and safety improvement measures. To mitigate the consequences of chemical accidents or to prepare preventive protective measures before the accident, it is necessary to know or at least estimate the course of accidents. In particular, it applies to the range of traumatic events and fatal accidents. One of the tools that can express the impact of accidents is modelling programs. This diploma thesis presents a comparison of outputs from two special types of software ? a foreign program the ALOHA and the TerEx developed in the Czech Republic. The purpose of the thesis was to indicate theoretical aspects related to gaseous toxic substances diffusion in the ground atmospheric layer and to describe modelling of their ill effects range. To achieve this objective, scientific literature and consultation with experts were used. The practical section of the thesis aimed at determining to what extent the results of both programs differ when initial conditions were identical. To achieve this goal, the intercomparison of outputs (e.g. hurtful concentration range) of the two programs that provided results for the same input data sets (type and quantity of hazardous substances, environmental temperature, wind speed, degree of cloud cover, weather stability class, type of ground surface) was used. After the assessment of the comparison it is possible to generalize the results stating that the software ALOHA compared to the TerEx is more conservative, which means that the ALOHA software provides longer anticipated ranges of danger. Therefore, it depends on the user (the person responsible ? crisis manager, intervention commander, mayor of the village), which approach they select or recommend ? to prepare a greater or a smaller area for a possible accident (to ensure public awareness, to implement technical measures to mitigate the impact of that accident, to assess the amount of financial resources, etc.). As a subsequent step it would be appropriate to verify the theoretical results experimentally, by field testing, which would be conducted under the same meteorological conditions under which the modelling was made by the mentioned programs. This would thus confirm the legitimacy of the special software use for the purpose of estimating the range of negative effects of chemical accidents.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:136475 |
Date | January 2012 |
Creators | HENDRYCH, Adam |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0072 seconds