Return to search

Local atmospheric electricity and its possible application in high-energy cosmic ray air shower detection.

We have conducted an extensive experimental study on the subject of near ground atmospheric electricity. The main objective was to gain more understanding of this particular aspect of atmospheric phenomena, while testing the possible application to cosmic ray research. The results in atmospheric electricity show that there are certain patterns in ion grouping such as the size and lifetime. The average lifetime of ion group is 0.7 seconds and the average size is about 10 meters at our experimental site. Ultrahigh energy cosmic ray air showers should create sizable slow atmospheric electric pulses according to our theoretical calculations. Preliminary studies on air showers with total particle number N equal or greater than 10⁵ (10¹⁵ eV) have yielded strong evidence that slow atmospheric current pulses are associated with air showers. The theory and the experiment agree with each other fairly well when we average over large numbers of events. With our current experimental arrangement, when the air shower exceeds a certain size, the system response saturates. Therefore it is extremely desirable in future research that the counter array be designed for a much higher threshold level, since this prototype experiment indicates that interesting data would be obtained. Another reason for further experimental research being directed toward ultrahigh energy, e.g., N ≥ 10⁷ (10¹⁷ eV) and higher, is to establish a calibration of the slow atmospheric electric signals generated by cosmic rays as a function of primary cosmic ray energy and core location. This type of slow atmospheric electric signal, if fully understood and calibrated, offers a new and potentially less expensive technique to observe ultrahigh energy cosmic ray events, which hold some fundamental keys to the knowledge of the universe on a large scale.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/184799
Date January 1989
CreatorsChen, Chuxing.
ContributorsBowen, Theodore, Chambers, Robert H., Emrick, Roy M., Jenkins, Edgar W., Shupe, Michael A.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0122 seconds