Return to search

Classifying the rotation of bacteria using neural networks / Rotationsklassificering av bakterier med neurala nätverk

Bacteria can quickly spread throughout the human body, making certain diseases hard or impossible to cure. In order to understand how the bacteria can initiate and develop into an infection, microfluidic chambers in a lab environment are used as a template of how bacteria reacts to different types of flows. However, accurately tracking the movement of bacteria is a difficult task, where small objects has to be captured with a high resolution and digitally analysed with computationally heavy methods. Popular imaging methods utilise digital holographic microscopy, where three-dimensional movement is captured in two-dimensional images by numerical reconstruction of the diffraction of light. Since numerical reconstructions become computationally heavy when a good accuracy is required, this master's thesis work focus on evaluating the possibility of using convolutional neural networks to quickly and accurately determine the spatial properties of bacteria. By thorough testing and analysis of state of the art and old networks a new network design is presented, designed to eliminate as many imaging issues as possible. We found that there are certain network design choices that help with reducing the overall error of the system, and with a well chosen training set with sensible augmentations, some networks were able to reach a 60% classification accuracy when determining the vertical rotation of the bacteria. Unfortunately, due to the lack of experimental data where the ground-truth is known, not much experimental testing could be performed. However, a few tests showed that images of high quality could be classified within the expected range of vertical rotation. / Bakterier kan snabbt sprida sig genom människokroppen, vilket försvårar starkt möjligheterna att kurera vissa sjukdomar. För att få en inblick i hur bakterier kan initiera och utvecklas till en infektion används som mall laborativa uppställningar med vätskekanaler i mikroskala när man söker förstå hur bakterier reagerar på olika typer av flöden. Att spåra dessa rörelser med god säkerhet är dock en utmaning, då man experimentellt söker fånga små skalor med hög upplösning, som sedan ska analyseras med datorintensiva metoder. Populära avbildningsmetoder använder sig utav digital holografisk mikroskopi, där tredimensionella rörelser kan fångas med hjälp av tvådimensionella bilder genom att numeriskt återskapa ljusets brytningsmönster mot objekten. Eftersom dessa metoder blir beräkningstunga när god säkerhet krävs så utforskar detta examensarbete möjligheterna att utnyttja faltningsnätverk för att snabbt och säkert bestämma vertikalrotationen hos bakterier avbildade med holografi. Genom nogranna tester av moderna samt äldre nätverk så presenteras en ny nätverksdesign, utvecklad i mål med att eliminera så många avbildningsproblem som möjligt. Vi fann att vissa designval vid nätverksutvecklingen kan hjälpa med att reducera klassificeringsfelen givet vårt system, och med en väl utvald träningsmängd med lämpliga justeringar så lyckades vi nå en klassificeringssäkerhet på över 60% med vissa nätverk. På grund av bristande experimentellt data där de riktiga värdena är kända så har ingen utförlig experimentell analys utförts, men några tester på experimentella bilder i god kvalité har visats ge resultat som tyder på en korrekt analys inom den förväntade vertikalrotationen.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-160518
Date January 2019
CreatorsHedström, Lucas
PublisherUmeå universitet, Institutionen för fysik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds