Return to search

A Density Functional Theory Study of Chemical Properties in Atoms and Simple Molecules : Numerical calculations for cylinder symmetrical molecules

The aim of this study is to study the ground-state of various elements including Hydrogen molecules and Heliumatoms using a self written Density Functional Theory code. We limit ourselves to simple linear moleculesusing cylindrical symmetry, for which the computational difficulty is manageable and appropriate for anundergraduate thesis. We focus on the binding length and energy of the molecules stated here. Charge densityis calculated using the Poisson equation, which is used to calculate the potential and correlation potential. From the distance dependent of the total energy, the chemical bond length can be determined. The results showa total energy for a Hydrogen molecule is -31.3 eV and most optimal binding length is identified at 0.76 Å.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-120058
Date January 2022
CreatorsLönnblad, Gustav
PublisherLinnéuniversitetet, Institutionen för fysik och elektroteknik (IFE)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds