Return to search

Impact of Electron Injection and Radiation Damage on Minority Carrier Transport Properties in Gallium Oxide and Gallium Nitride

This study investigates the minority carrier transport properties of wide bandgap semiconductors, primarily gallium oxide (Ga2O3) and gallium nitride (GaN). Ga2O3 is an emerging ultra-wide bandgap semiconductor with applications in high temperature electronics and sensors for use in extreme environments. Ga2O3 is a suitable material for devices deployed in the lower Earth satellite orbits due to its intrinsic radiation hardness, applications in solar-blind ultraviolet (UV) detection, and high power/high frequency electronics. The main factor limiting Ga2O3 technology so far is the reliable high mobility p-type Ga2O3; however, recent advances have shown a promising future for developments in this direction. Minority carrier transport properties such as minority carrier diffusion length (L) and lifetime (t) are of vital importance with the advent of p-type conductivity, as they are the limiting factor in the performance of bipolar devices. In this thesis, a comparison of the temperature dependence of L, t, and CL emission in n-type Si-doped Ga2O3 Schottky rectifiers, exposed to 18 MeV alpha particles and 10 MeV protons is presented. Additionally, the effect of electron injection, a countermeasure to in-situ mitigates the radiation damage, is studied in these structures. Electron injection has also been found to enhance L and t in unintentionally doped GaN. Lastly, the temperature dependence of minority carrier diffusion length and CL emission is presented in the novel p-type Ga2O3.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-2478
Date01 January 2022
CreatorsModak, Sushrut
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations, 2020-

Page generated in 0.0023 seconds