Understanding the space environment and contamination concerns of a spacecraft is critical in designing a successful mission. The ability for a spacecraft to meet its science objectives relies on systems functioning as intended. A concern for maintain- ing performance while on orbit is molecular contamination. Silicones have previously been shown to form a silica layer on their surfaces when exposed to atomic oxygen. For silicone contamination, this translates to a silica film on the contaminated surface. Missions such as Long Duration Exposure Facility and Evaluation of Oxygen Interactions with Materials III have indicated that the silica film can trap deposits of carbon contamination to the surface during its formation. This phenomenon was explored in this research using RTV-S 691 silicone and Braycote 601EF for the carbon-based contaminant. The experiment involved contaminating an aluminum substrate in three different configurations; one for each contaminant individually on the substrate, and one with both contaminants. These samples were exposed to atomic oxygen for a period of 24 hours, then analyzed with Fourier transform infrared spectroscopy. The trends in infrared spectra for the different test cases were characterized for comparison. The trend for samples with a carbon-to-silicone contamination ratio of greater than ten to one showed peaks corresponding to those seen on the singularly contaminated samples. When the concentration of silicone was increased, the trend in spectral results showed peaks corresponding to Braycote before atomic oxygen exposure. At certain concentrations of RTV silicone to Braycote, the trends suggest Braycote is partially protected from atomic oxygen by a silica film. This indicates that silicone conversion to silica in atomic oxygen can trap contaminants to a surface.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-4058 |
Date | 01 June 2022 |
Creators | Gordon, Mayana W |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0022 seconds