Vehicles and machinery play a crucial role in our daily lives, contributing to our transportationneeds and supporting various industries. As society strives for sustainability, the advancementof technology and efficient resource allocation become paramount. However, vehicle faultscontinue to pose a significant challenge, leading to accidents and unfortunate consequences.In this thesis, we aim to address this issue by exploring the effectiveness of an ensemble ofdeep learning models for supervised classification. Specifically, we propose to evaluate the performance of 1D-CNN-Bi-LSTM and 1D-CNN-Bi-GRU models. The Bi-LSTM and Bi-GRUmodels incorporate a multi-head attention mechanism to capture intricate patterns in the data.The methodology involves initial feature extraction using 1D-CNN, followed by learning thetemporal dependencies in the time series data using Bi-LSTM and Bi-GRU. These models aretrained and evaluated on a labeled dataset, yielding promising results. The successful completion of this thesis has met the objectives and scope of the research, and it also paves the way forfuture investigations and further research in this domain.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mau-61259 |
Date | January 2023 |
Creators | Khaliqi, Rafi, Iulian, Cozma |
Publisher | Malmö universitet, Institutionen för datavetenskap och medieteknik (DVMT) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds