Introduction: Despite the relatively low dose (0.5 mSv – 1 mSv) generated by Attenuation Correction CT (ACCT) in PET examinations, the ALARA principle is still applicable. The currently used ACCT standard protocol at the Karolinska University Hospital in Solna uses 7.6 effective mAs (mAseff) and 120 kVp, but reducing mAseff and/or kVp would decrease patient dose as well as facilitate an increased number of research subjects. A CT reconstruction algorithm called Quantification Achieved Consistently (Q.AC.) (Lonn, 2012) has recently been developed to enable reduced doses from ACCT, while preserving quantitative PET data. The purposes of this study were to investigate possible limitations of the Q.AC. with respect to patient size, and to optimise protocols, aiming at minimising ACCT dose in terms of Volumetric Computer Tomography Dose Index CTDIvol. Methods: Measurements were performed with a GE PET/CT Discovery system, which offers Q.AC. reconstruction. The NEMA NU-2 protocol was followed to quantify PET quality, including evaluations of relative count error in the artificial lung in the phantom centre (lung), hot- and cold-sphere contrast (Q), and background variability (N). Two phantoms were used; the NEMA body phantom (elliptical cross section sized 30 cm laterally and 23 cm anterior-posterior (AP)), here representing paediatric patients and small-sized adults, and the same phantom with an additional (20 cm laterally and 4 cm AP) ellipsoid plastic (PMMA) extension ring, representing mid- and large-sized patients. ACCTs were acquired with 15 mAseff values, range [2.3 - 260], in combination with four kVp values [80, 100, 120, 140] and reconstructed with two algorithms (Q.AC. and a regular soft CT algorithm). Consequently, PET reconstructions were performed based on each mAseff, kVp and CT-reconstruction combination. Results: Quantitatively similar PET results to the standard protocol were achieved with the Q.AC. CT reconstruction algorithm using a CTDIvol = 0.06 mGy (2.3 mAseff and 80 kVp) for the NEMA body phantom, respectively a CTDIvol = 0.20 mGy (2.3 mAseff and 120 kVp) for the phantom with additional extension ring. Conclusions: This study indicates that the Q.AC. CT reconstruction algorithm enables accurate PET results at lower ACCT mAseff and kVp settings than the currently used clinical standard protocol. For paediatric patients and small-sized adults, a reduction of CTDIvol by approximately 90% may be achieved, while for mid- and large-sized patients, the CTDIvol can be reduced by approximately 70% without loss of quantitative PET data.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-190311 |
Date | January 2019 |
Creators | Törnblom, Anders |
Publisher | Stockholms universitet, Fysikum, Nuklearmedicin Karolinska Sjukhuset Solna |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Anders Törnblom |
Page generated in 0.0021 seconds