International Telemetering Conference Proceedings / October 30-November 02, 1995 / Riviera Hotel, Las Vegas, Nevada / The Stanford University Satellite Systems Development Laboratory will flight test a telemetry reengineering experiment on its student-built SAPPHIRE spacecraft. This experiment utilizes solar panel current information and knowledge of panel geometry in order to create a virtual sun sensor that can roughly determine the satellite's sun angle. The Omni-Directional Differential Sun Sensor (ODDSS) algorithm normalizes solar panel currents and differences them to create a quasi-linear signal over a particular sensing region. The specific configuration of the SAPPHIRE spacecraft permits the construction of 24 such regions. The algorithm will account for variations in panel outputs due to battery charging, seasonal fluctuations, solar cell degradation, and albedo affects. Operationally, ODDSS telemetry data will be verified through ground processing and comparison with data derived from SAPPHIRE's infrared sensors and digital camera. The expected sensing accuracy is seven degrees. This paper reviews current progress in the design and integration of the ODDSS algorithm through a discussion of the algorithm's strategy and a presentation of results from hardware testing and software simulation.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/611592 |
Date | 11 1900 |
Creators | Swartwout, Michael, Olsen, Tanya, Kitts, Christopher |
Contributors | Stanford University |
Publisher | International Foundation for Telemetering |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Proceedings |
Rights | Copyright © International Foundation for Telemetering |
Relation | http://www.telemetry.org/ |
Page generated in 0.0058 seconds