Based on technological advances made within the past decades, ground-penetrating radar (GPR) has become a well-established, non-destructive subsurface imaging technique. Catalyzed by recent demands for high-resolution, near-surface imaging (e.g., the detection of unexploded ordnances and subsurface utilities, or hydrological investigations), the quality of today's GPR-based, near-surface images has significantly matured. At the same time, the analysis of oil and gas related reflection seismic data sets has experienced significant advances.
Considering the sensitivity of attribute analysis with respect to data positioning in general, and multi-trace attributes in particular, trace positioning accuracy is of major importance for the success of attribute-based analysis flows. Therefore, to study the feasibility of GPR-based attribute analyses, I first developed and evaluated a real-time GPR surveying setup based on a modern tracking total station (TTS). The combination of current GPR systems capability of fusing global positioning system (GPS) and geophysical data in real-time, the ability of modern TTS systems to generate a GPS-like positional output and wireless data transmission using radio modems results in a flexible and robust surveying setup. To elaborate the feasibility of this setup, I studied the major limitations of such an approach: system cross-talk and data delays known as latencies. Experimental studies have shown that when a minimal distance of ~5 m between the GPR and the TTS system is considered, the signal-to-noise ratio of the acquired GPR data using radio communication equals the one without radio communication. To address the limitations imposed by system latencies, inherent to all real-time data fusion approaches, I developed a novel correction (calibration) strategy to assess the gross system latency and to correct for it. This resulted in the centimeter trace accuracy required by high-frequency and/or three-dimensional (3D) GPR surveys.
Having introduced this flexible high-precision surveying setup, I successfully demonstrated the application of attribute-based processing to GPR specific problems, which may differ significantly from the geological ones typically addressed by the oil and gas industry using seismic data. In this thesis, I concentrated on archaeological and subsurface utility problems, as they represent typical near-surface geophysical targets. Enhancing 3D archaeological GPR data sets using a dip-steered filtering approach, followed by calculation of coherency and similarity, allowed me to conduct subsurface interpretations far beyond those obtained by classical time-slice analyses. I could show that the incorporation of additional data sets (magnetic and topographic) and attributes derived from these data sets can further improve the interpretation. In a case study, such an approach revealed the complementary nature of the individual data sets and, for example, allowed conclusions about the source location of magnetic anomalies by concurrently analyzing GPR time/depth slices to be made.
In addition to archaeological targets, subsurface utility detection and characterization is a steadily growing field of application for GPR. I developed a novel attribute called depolarization. Incorporation of geometrical and physical feature characteristics into the depolarization attribute allowed me to display the observed polarization phenomena efficiently. Geometrical enhancement makes use of an improved symmetry extraction algorithm based on Laplacian high-boosting, followed by a phase-based symmetry calculation using a two-dimensional (2D) log-Gabor filterbank decomposition of the data volume. To extract the physical information from the dual-component data set, I employed a sliding-window principle component analysis. The combination of the geometrically derived feature angle and the physically derived polarization angle allowed me to enhance the polarization characteristics of subsurface features. Ground-truth information obtained by excavations confirmed this interpretation. In the future, inclusion of cross-polarized antennae configurations into the processing scheme may further improve the quality of the depolarization attribute.
In addition to polarization phenomena, the time-dependent frequency evolution of GPR signals might hold further information on the subsurface architecture and/or material properties. High-resolution, sparsity promoting decomposition approaches have recently had a significant impact on the image and signal processing community. In this thesis, I introduced a modified tree-based matching pursuit approach. Based on different synthetic examples, I showed that the modified tree-based pursuit approach clearly outperforms other commonly used time-frequency decomposition approaches with respect to both time and frequency resolutions. Apart from the investigation of tuning effects in GPR data, I also demonstrated the potential of high-resolution sparse decompositions for advanced data processing. Frequency modulation of individual atoms themselves allows to efficiently correct frequency attenuation effects and improve resolution based on shifting the average frequency level.
GPR-based attribute analysis is still in its infancy. Considering the growing widespread realization of 3D GPR studies there will certainly be an increasing demand towards improved subsurface interpretations in the future. Similar to the assessment of quantitative reservoir properties through the combination of 3D seismic attribute volumes with sparse well-log information, parameter estimation in a combined manner represents another step in emphasizing the potential of attribute-driven GPR data analyses. / Geophysikalische Erkundungsmethoden haben in den vergangenen Jahrzehnten eine weite Verbreitung bei der zerstörungsfreien beziehungsweise zerstörungsarmen Erkundung des oberflächennahen Untergrundes gefunden. Im Vergleich zur Vielzahl anderer existierender Verfahrenstypen ermöglicht das Georadar (auch als Ground Penetrating Radar bezeichnet) unter günstigen Standortbedingungen Untersuchungen mit der höchsten räumlichen Auflösung. Georadar zählt zu den elektromagnetischen (EM) Verfahren und beruht als Wellenverfahren auf der Ausbreitung von hochfrequenten EM-Wellen, das heisst deren Reflektion, Refraktion und Transmission im Untergrund. Während zweidimensionale Messstrategien bereits weit verbreitet sind, steigt gegenwärtig das Interesse an hochauflösenden, flächenhaften Messstrategien, die es erlauben, Untergrundstrukturen dreidimensional abzubilden.
Ein dem Georadar prinzipiell ähnliches Verfahren ist die Reflexionsseismik, deren Hauptanwendung in der Lagerstättenerkundung liegt. Im Laufe des letzten Jahrzehnts führte der zunehmende Bedarf an neuen Öl- und Gaslagerstätten sowie die Notwendigkeit zur optimalen Nutzung existierender Reservoirs zu einer verstärkten Anwendung und Entwicklung sogenannter seismischer Attribute. Attribute repräsentieren ein Datenmaß, welches zu einer verbesserten visuellen Darstellung oder Quantifizierung von Dateneigenschaften führt die von Relevanz für die jeweilige Fragestellung sind. Trotz des Erfolgs von Attributanalysen bei reservoirbezogenen Anwendungen und der grundlegenden Ähnlichkeit von reflexionsseismischen und durch Georadar erhobenen Datensätzen haben attributbasierte Ansätze bisher nur eine geringe Verbreitung in der Georadargemeinschaft gefunden. Das Ziel dieser Arbeit ist es, das Potential von Attributanalysen zur verbesserten Interpretation von Georadardaten zu untersuchen. Dabei liegt der Schwerpunkt auf Anwendungen aus der Archäologie und dem Ingenieurwesen.
Der Erfolg von Attributen im Allgemeinen und von solchen mit Berücksichtigung von Nachbarschaftsbeziehungen im Speziellen steht in engem Zusammenhang mit der Genauigkeit, mit welcher die gemessenen Daten räumlich lokalisiert werden können. Vor der eigentlichen Attributuntersuchung wurden deshalb die Möglichkeiten zur kinematischen Positionierung in Echtzeit beim Georadarverfahren untersucht. Ich konnte zeigen, dass die Kombination von modernen selbstverfolgenden Totalstationen mit Georadarinstrumenten unter Verwendung von leistungsfähigen Funkmodems eine zentimetergenaue Positionierung ermöglicht. Experimentelle Studien haben gezeigt, dass die beiden potentiell limitierenden Faktoren - systeminduzierte Signalstöreffekte und Datenverzögerung (sogenannte Latenzzeiten) - vernachlässigt beziehungsweise korrigiert werden können.
In der Archäologie ist die Untersuchung oberflächennaher Strukturen und deren räumlicher Gestalt wichtig zur Optimierung geplanter Grabungen. Das Georadar hat sich hierbei zu einem der wohl am meisten genutzten zerstörungsfreien geophysikalischen Verfahren entwickelt. Archäologische Georadardatensätze zeichnen sich jedoch oft durch eine hohe Komplexität aus, was mit der wiederholten anthropogenen Nutzung des oberflächennahen Untergrundes in Verbindung gebracht werden kann. In dieser Arbeit konnte gezeigt werden, dass die Verwendung zweier unterschiedlicher Attribute zur Beschreibung der Variabilität zwischen benachbarten Datenspuren eine deutlich verbesserte Interpretation in Bezug auf die Fragestellung ermöglicht. Des Weiteren konnte ich zeigen, dass eine integrative Auswertung von mehreren Datensätzen (methodisch sowie bearbeitungstechnisch) zu einer fundierteren Interpretation führen kann, zum Beispiel bei komplementären Informationen der Datensätze.
Im Ingenieurwesen stellen Beschädigungen oder Zerstörungen von Versorgungsleitungen im Untergrund eine große finanzielle Schadensquelle dar. Polarisationseffekte, das heisst Änderungen der Signalamplitude in Abhängigkeit von Akquisitions- sowie physikalischen Parametern stellen ein bekanntes Phänomen dar, welches in der Anwendung bisher jedoch kaum genutzt wird. In dieser Arbeit wurde gezeigt, wie Polarisationseffekte zu einer verbesserten Interpretation verwendet werden können. Die Überführung von geometrischen und physikalischen Attributen in ein neues, so genanntes Depolarisationsattribut hat gezeigt, wie unterschiedliche Leitungstypen extrahiert und anhand ihrer Polarisationscharakteristika klassifiziert werden können.
Weitere wichtige physikalische Charakteristika des Georadarwellenfeldes können mit dem Matching Pursuit-Verfahren untersucht werden. Dieses Verfahren hatte in den letzten Jahren einen großen Einfluss auf moderne Signal- und Bildverarbeitungsansätze. Matching Pursuit wurde in der Geophysik bis jetzt hauptsächlich zur hochauflösenden Zeit-Frequenzanalyse verwendet. Anhand eines modifizierten Tree-based Matching Pursuit Algorithmus habe ich demonstriert, welche weiterführenden Möglichkeiten solche Datenzerlegungen für die Bearbeitung und Interpretation von Georadardaten eröffnen. Insgesamt zeigt diese Arbeit, wie moderne Vermessungstechniken und attributbasierte Analysestrategien genutzt werden können um dreidimensionale Daten effektiv und genau zu akquirieren beziehungsweise die resultierenden Datensätze effizient und verlässlich zu interpretieren.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:5012 |
Date | January 2010 |
Creators | Böniger, Urs |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Geowissenschaften |
Source Sets | Potsdam University |
Language | English |
Detected Language | English |
Type | Text.Thesis.Doctoral |
Format | application/pdf |
Rights | http://opus.kobv.de/ubp/doku/urheberrecht.php |
Page generated in 0.002 seconds