Return to search

Erzeugung großflächiger organischer Leuchtdioden in einem vertikalen In-Line-Bedampfungssystem

Im Mittelpunkt der vorliegenden Dissertation stand die Herstellung von organischen Leuchtdioden und Passiv-Matrix-Displays an einer neuartigen Durchlauf-Depositionsanlage. Die Abscheidung von "small molecule" Materialien im Hochvakuum wurde dabei mittels organischer Molekularstrahldeposition (OMBD) durchgeführt. Um effiziente Leuchtdioden zu erzielen, sind die Bauelemente als Mehrschichtsystem aufgebracht worden. Als Grundstruktur kam eine Schichtenfolge zur Anwendung, die als Löchertransporter aus dem Starburst-Derivat 2-TNATA, daran anschließend einem tertiären Arylamin, dem elektronenblockierenden a-NPB sowie dem Oxinat-Komplex Alq3 besteht. Dabei diente das Aluminium-Oxinat als Elektronenleiter und Emissionsmaterial. Mit dem Quinacridon-Derivat QAD als Dotierstoff wurde außerdem eine OLED-Struktur mit Gast-Wirtsystem realisiert Eine kontrollierte und reproduzierbare Deposition der organischen Materialien ist eine unabdingbare Voraussetzung, um organische Leuchtdioden kommerziell als Mehrschichtbauelemente herstellen zu können. Dazu wurde ein Hochvakuumsystem der Firma Applied Films installiert und in Betrieb genommen. Die VES 400/13-Entwicklungsanlage ist als Vertical Evaporation and Sputtering Durchlaufsystem für bis zu 400 mm hohe Substrate mit 11 individuellen Prozesskammern sowie zwei daran anschließenden Stickstoffboxen konzipiert. Diese Technologie ermöglicht das Aufdampfen einer oder nacheinander mehrerer Schichten auf beliebiges Substratmaterial. Entsprechend den Erfordernissen sind wichtige Prozessparameter wie Depositionsrate, Transportgeschwindigkeit des Substrates sowie Filmdicke der funktionellen Schichten in einem weiten Bereich frei einstellbar. Neben einer ausgeglichenen Löcher- und Elektroneninjektion werden die Eigenschaften der hergestellten Leuchtdioden durch die Dicken der einzelnen Schichten, der Beweglichkeit der Ladungsträger in den verwendeten organischen Materialien sowie der energetischen Lage der höchsten besetzten und niedrigsten unbesetzten Molekülorbitale der Halbleiter bestimmt. Als undotierte OLED-Struktur wurde eine Schichtenfolge aus ITO / 2-TNATA / NPB / Alq3 / Mg verwendet. Die Stärke der elektrischen Kontakte betrug jeweils etwa 150 nm für ITO bzw. Magnesium. Die organischen Halbleiterfilme verfügten über Lagendicken von 60 / 10 / 60 nm. Eine derart aufgebaute Leuchtdiode zeigte ein grünes Emissionsspektrum, dessen Mittenwellenlänge bei etwa 537 nm lag und eine Halbwertsbreite von circa 112 nm aufwies. Für die Betriebsspannung, die Leuchtdichte, die Strom- sowie die Leistungseffizienz ergaben sich für die beiden Stromdichten von 3 mA/cm² und 30 mA/cm² optimierte Werte zu 5,3 V bzw. 9,4 V, 100 cd/m² bzw. 1317 cd/m², 3,3 cd/A bzw. 4,4 cd/A sowie 2 lm/W bzw. 1,5 lm/W. Das Sperr- oder Gleichrichtungsverhältnis Gv wurde für die beiden gemessenen Maximal-spannungen von ±10 Volt zu <5 x 107 bestimmt. Durch die Dotierung der Alq3-Emissionsschicht mit etwa 1 mol% des Quinacridon-Derivats QAD und Hinzufügen einer separaten Elektronentransportschicht konnte eine Steigerung der Elektrolumines-zenz erreicht werden. Der OLED-Aufbau des Gast-Wirt-Systems verfügt über einen Schichtenstapel mit den Lagen ITO / 2-TNATA / NPB / Alq3 + QAD / Alq3 / Mg. Die Filmdicken der organischen Schichten der OLED mit den besten Eigenschaften betragen 60 / 10 / 35 / 25 nm. Die anorganischen elektrischen Kontakte waren jeweils etwa 150 nm dick. Die dotierten Bauelemente zeigen ein bei einer Mittenwellenlänge von 527 nm emittierendes, grünes Spektrum. Mit einer geringen Halbwertsbreite von 28 nm ist die Bedingung einer schmalen Emissionsbreite für die Anwendung in OLED-Displays erfüllt. Die Betriebsspannung, die Leuchtdichte, die Strom- und die Leistungseffizienz ergeben für die beiden Stromdichten von 6,2 mA/cm² und 45,6 mA/cm² optimierte Werte zu 10,8 V bzw. 17,0 V, 445,4 cd/m² bzw. 3816,7 cd/m², 7,2 cd/A bzw. 8,4 cd/A sowie 2,1 lm/W bzw. 1,6 lm/W.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:14-1119355576183-77424
Date24 May 2005
CreatorsSchreil, Manfred
ContributorsTechnische Universität Dresden, Mathematik und Naturwissenschaften, Physik, Institut für angewandte Photophysik, Prof. Karl Leo, Prof. M. Heuken, Prof. Hubert Lakner, Prof. Karl Leo
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
Languagedeu
Detected LanguageGerman
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0039 seconds