Les aciers Dual Phase (DP) ferrito-martensitiques sont largement utilisés sous la forme de tôles minces dans la construction automobile en raison de leur excellent compromis résistance/ductilité et donc pour leur potentiel d’allègement. Ils sont élaborés par coulée continue, laminage à chaud et à froid suivis d’un recuit continu. Durant l’étape de chauffage et de maintien de ce recuit, la microstructure ferrito-perlitique déformée issue des étapes de laminage se transforme en microstructure ferrito-austénitique recristallisée. L’expérience montre que les cinétiques de recristallisation et de transformation ainsi que la distribution spatiale et morphologique des microstructures résultantes sont très sensibles aux vitesses de chauffage. Ce travail de thèse s’intéresse aux différents mécanismes expliquant cette sensibilité comme la maturation des carbures, la restauration, la recristallisation de la ferrite et la transformation austénitique et toutes leurs interactions. Ces mécanismes métallurgiques ont été caractérisés à différentes échelles et par des approches in situ sur un acier industriel puis modéliser par des approches à base physique pour guider une possible production. Après un premier chapitre dédié aux techniques expérimentales et de modélisations utilisées, le second chapitre de ce travail s’intéresse principalement à la caractérisation de la morphogénèse des microstructures ferrito-austénitique en microscopie électronique à balayage (MEB). Le troisième chapitre est une étude détaillée en Microscopie Electronique à Transmission (MET) et par modélisation thermocinétique (ThermoCalc, DICTRA) de la composition des carbures tout au long du processus, du laminage à chaud au recuit. Restauration et recristallisation sont étudiées au chapitre 4 principalement par des expériences in situ en Diffraction des Rayons X à Haute Energie (DRXHE) sur ligne de lumière synchrotron et modélisées par une approche originale à champs moyen. Enfin, le chapitre 5 propose une étude sous DICTRA pour comprendre les cinétiques de transformation austénitique en fonction des vitesses de chauffe. Cette approche est novatrice car elle prend en compte les carbures intergranulaires de la ferrite, a été conduite en conditions anisothermes et propose une analyse fine des modes de croissance de l’austénite associées au manganèse, élément clef de la composition de ces alliages. / Ferrite/Martensite Dual-Phase steels are largely used in the form of thin sheets in the automotive industry for their excellent balance between resistance and strength and thus for their lightening potential. They are elaborated by continuous casting, hot- and cold- rolling, followed by a continuous annealing. During the heating and the soaking stages of this latter process, the deformed ferrite/pearlite microstructure obtained after rolling evolves is transformed into a recrystallized ferrite-austenite microstructure. The experiments show that recrystallization and austenite transformation kinetics as well as the resulting spatial and morphological distribution of the phases are highly sensitive to the heating rate. This PhD thesis aims at understanding the different metallurgical mechanisms explaining this particular sensitivity as carbides ripening, recovery, recrystallization and austenite transformation and all their possible interactions. The mechanisms were characterized at different scales and by in situ technics on an industrial steel and model by physical based approaches in order to drive future production lines. After a first chapter dedicated to the experimental and modeling methods, the second chapter deals with the characterization of the morphogenesis of ferrite-austenite microstructures by Scanning Electron Microscopy (SEM). Chapter 3 is a study by Transmission Electron Microscopy (TEM) and by thermokinetic modeling (ThermoCalc, DICTRA) of the chemical composition of carbides along with manufacturing, from hot-rolling to annealing. Recovery and recrystallization are studied in chapter 4 by the means of in situ High Energy X-Ray Diffraction (HEXRD) experiments conducted on a synchrotron beamline and modeled by an original mean-field approach. Finally, chapter 5 proposes an analysis with DICTRA to understand austenite transformation kinetics as function of heating rates. The proposed approach is innovative as it accounts for intergranular carbides in the ferrite matrix, is conducted in non-isothermal conditions and propose a fine analysis of growth modes of austenite associated to manganese, a key alloying element of the studied steels.
Identifer | oai:union.ndltd.org:theses.fr/2019LORR0068 |
Date | 18 June 2019 |
Creators | Moreno, Marc |
Contributors | Université de Lorraine, Allain, Sébastien, Da Costa Teixeira, Julien |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0088 seconds