Authentication is an indispensable part of information security. It serves to distinguish legitimate users from unauthorized ones. With the rapid growth of Internet of Things (IoT) devices, authentication of wireless communication is gathering more and more attention. Traditional authentication methods using cryptography, such as Hash-based Message Authentication Codes (HMACs) or digital signature, demand significant computational power and hardware resources, especially for low-end platforms. Spoofing attackers take advantage of trust relationships, trying to impersonate legitimate entities the wireless Access Point (AP) trusts. To tackle this issue, physical layer authentication methods are proposed. Using a fast and lightweight implementation, authentication based on physical layer attributes has the chance to improve the security performance of the authentication in the wireless network and protect it from spoofing attacks. It takes advantage of the uniqueness and inimitability of physical layer attributes by using them as identifying information. In this project, one of the physical layer attributes, Channel State Information (CSI), is utilized as the identifying information of devices. CSI samples from different wireless devices are collected by a wireless monitor. Features on amplitude and phase are extracted from raw CSI samples through data processing algorithms. For every device, a corresponding feature profile is pre-built so that authentication can be accomplished by matching the CSI profile. One-Class Support Vector Machine (OCSVM), a machine learning technique, which has a satisfying performance in novel discrimination, is used for profile building and profile matching algorithms so that the physical layer identities from various devices can be distinguished effectively. Our study aims to prove the feasibility of the authentication using CSI identity is conducted and the authentication and spoofer detection accuracy is calculated. With the profile matching algorithm based on OCSVM, the authentication accuracy and the spoofer detection accuracy remains around 98% and 100% respectively. Finally, to address the limitations in related work, such as the phase error fingerprinting which is not effective across all the bands, and the instability of the authentication results, a combined authentication method is designed and implemented successfully. The new method is based on both the traditional cryptographic authentication and CSI-based authentication. The implementation is accomplished by using the data processing methods and discrimination techniques mentioned above. The basic functions, such as detecting CSI variance and switching between CSI and cryptographic authentication, and the CPU computing performance under different authentication modes are observed. The performance of the new method is analyzed and evaluated under different potential attack scenarios. The evaluation shows that the basic functions and defense ability are valid and satisfying under different scenarios. The computing resource saves at least 36.92% and at most 79.73% compared to various traditional cryptographic authentication. / Autentisering är en oumbärlig del av informationssäkerheten, eftersom den särskiljer legitima användare och motståndare i nätverk. Med den snabba tillväxten av trådlösa IoT-enheter får säker autentisering inom trådlös kommunikation mer och mer uppmärksamhet. Traditionell trådlös autentisering metoder har en enorm efterfrågan på beräkningskraft och hårdvaruresurser, samtidigt som de är sårbara för vissa attacker. Spoofing-attack, som drar fördel av pålitliga relationer genom att imitera en person eller organisation som den trådlösa AP litar på, är en av de svåraste säkerheterna problem med trådlös autentisering. För att lösa detta problem föreslås autentiseringsmetoder för fysiska lager. Genom att använda en snabb och lätt implementering har autentiseringen baserad på fysiska lagerattribut möjlighet att förbättra säkerhetsprestandan för autentiseringen i det trådlösa nätverket och skydda den från spoofing attacker. Eftersom det tar fördelen av det unika och oefterhärmlighet av fysiska lagerattribut genom att använda dem som identitetsinformation som ska autentiseras. I detta projekt används ett av attributen för fysiskt lager, CSI som enhetsidentitet för att studera prestandan för trådlös autentisering under det nya överföringsprotokollet 802.11ac.CSI-prov från olika trådlösa enheter samlas in från den trådlösa monitorn. Funktioner på Amplitude och Phase extraheras från råa CSI-prover genom respektive dataförbehandlingsalgoritmer. För varje enhet är en motsvarande funktionsprofil förbyggd så att autentiseringen kan utföras genom att matcha CSI-profilen. Maskininlärningsteknik, OCSVM, som har en tillfredsställande prestanda i den nya diskrimineringen, används i profilbyggande och profilmatchningsalgoritmer så att de fysiska lagrets identiteter från olika enheter effektivt kan särskiljas. En studie syftar till att bevisa genomförbarheten av autentisering med CSI-identitet genomförs och noggrannheten för autentisering och spooferdetektering beräknas. Med profilmatchningsalgoritmen bas ed på OCSVM förblir autentiseringsnoggrannheten och spooferdetekteringsnoggrannheten runt 98% till 99% respektive 100%. Slutligen, med ovanstående metoder och tekniker och övervägandet av begränsningar i relaterat arbete, som fasfelsfingeravtrycksfelet som inte är tillräckligt effektivt över alla band, och instabiliteten i autentiseringsresultaten, ett lättviktigt och flexibelt autentiseringsschema baserat på kombination av traditionell kryptoautentisering och CSI-autentisering designas och implementeras framgångsrikt. Grundfunktionen och datorprestanda observeras och prestandan för den nya metoden analyseras under olika potentiella attackscenarier. Efter experimenten kan datorresurser sparas åtminstone 36,92% och som mest 79,73% jämfört med olika traditionella kryptoautentiseringar. Dessutom är den grundläggande funktionen och försvarsförmågan giltig och tillfredsställande under olika scenarier.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-321475 |
Date | January 2022 |
Creators | Liang, Xintai |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:718 |
Page generated in 0.004 seconds