Return to search

Critical behavior for the model of random spatial permutations

We examine a phase transition in a model of random spatial permutations which originates in a study of the interacting Bose gas. Permutations are weighted according to point positions; the low-temperature onset of the appearance of arbitrarily long cycles is connected to the phase transition of Bose-Einstein condensates. In our simplified model, point positions are held fixed on the fully occupied cubic lattice and interactions are expressed as Ewens-type weights on cycle lengths of permutations. The critical temperature of the transition to long cycles depends on an interaction-strength parameter α. For weak interactions, the shift in critical temperature is expected to be linear in α with constant of linearity c. Using Markov chain Monte Carlo methods and finite-size scaling, we find c = 0.618 ± 0.086. This finding matches a similar analytical result of Ueltschi and Betz. We also examine the mean longest cycle length as a fraction of the number of sites in long cycles, recovering an earlier result of Shepp and Lloyd for non-spatial permutations. The plan of this paper is as follows. We begin with a non-technical discussion of the historical context of the project, along with a mention of alternative approaches. Relevant previous works are cited, thus annotating the bibliography. The random-cycle approach to the BEC problem requires a model of spatial permutations. This model it is of its own probabilistic interest; it is developed mathematically, without reference to the Bose gas. Our Markov-chain Monte Carlo algorithms for sampling from the random-cycle distribution - the swap-only, swap-and-reverse, band-update, and worm algorithms - are presented, compared, and contrasted. Finite-size scaling techniques are used to obtain information about infinite-volume quantities from finite-volume computational data.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/193647
Date January 2010
CreatorsKerl, John R.
ContributorsKennedy, Thomas, Ueltschi, Daniel, Kennedy, Thomas, Bhattacharya, Rabindra, Lin, Kevin, Ueltschi, Daniel
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0025 seconds