Return to search

Generation, regulation and function of morphology in Leishmania and Trypanosoma

Little is known about the generation of Leishmania morphology and the function of morphology in trypanosomatids, despite every species having characteristic cell shapes and undergoing changes in morphology between life cycle stages. To address this I analysed morphogenesis of the cell body and flagellum through the cell cycle of the Leishmania insect (promastigote) life cycle stage using a novel method for determining cell cycle stage from cell size and DNA content. This showed cell body morphology is generated by growth and then remodelling of cell shape around mitosis and cytokinesis. Mathematical modelling of flagellum growth indicated flagellum length continues to increase over multiple cell cycles and does not reach a defined length. I also observed little link between the cell cycle and flagellum length regulation during differentiation to the mammalian macrophage-inhabiting (amastigote) life cycle stage. Analysis of motility showed the diverse flagellar lengths of promastigote Leishmania cells bestow different swimming abilities, and the capacity of Leishmania promastigotes for highly directional swimming differs sharply from trypomastigote Trypanosoma brucei. This difference did not arise from altered flagellar beating therefore appeared to be linked to morphology. Together these indicate the mechanisms of cell body morphogenesis, flagellum length regulation, life cycle stage differentiation and the swimming abilities of the cells the morphogenetic processes generate differ significantly between Leishmania and T. brucei. These insights motivated the programming of automated micrograph analysis tools based on a new DNA staining method to support similar future morphometric analyses. This is the first comprehensive comparison of morphogenesis and function of morphology in a promastigote and a trypomastigote and, by considering these new insights in the context of existing molecular biology and the morphological diversity across many trypanosomatid species, give insight into basic Leishmania biology, the shared molecular mechanisms underlying morphogenesis and the potential functions of the diverse morphologies which are seen in different trypanosomatid species and life cycle stages.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:588394
Date January 2012
CreatorsWheeler, Richard John
ContributorsGull, Keith; Gluenz, Eva
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:c44354bc-5a93-4fce-a716-bb0a63131901

Page generated in 0.0022 seconds