Return to search

Control of robotic manipulators using acceleration feedback

The control law that is investigated in this thesis is referred to as the acceleration feedback control law, first introduced by (Luo and Saridis 1983). The study of the error performance of this control law under non-ideal conditions is the subject of this thesis. A design methodology evolves from the theoretical foundations of the acceleration feedback control law. The design methodology yields a robust, high performance closed loop robot manipulator system. Design experiments are performed on a PUMA 600 robot manipulator and the closed loop performance is analyzed by simulation study. / The control law objective is to ensure that the manipulator joint coordinate trajectory is maintained with respect to a desired joint trajectory. The stability and error performance properties of the acceleration feedback control law are analytically examined by a Lyapunov stability analysis. The effects of integral control and computed torque augmentation are also examined in the stability and error performance analysis. The robustness properties, in the presence of high frequency unstructured uncertainties, are examined by classical frequency domain techniques. The theoretical results are verified by simulation. The simulation model test-bed is based on a PUMA 600 robot manipulator which is used throughout the thesis to support theoretical results. / The goal of this thesis is in presenting the acceleration feedback control law with an accompanying design methodology as a practical robot manipulator control law. The design methodology allows robot manipulator system designers to implement this control law as a simple, inexpensive, microprocessor based servomechanism at each joint. The theoretical development not only accounts for the intrinsic design trade-offs but also assures designers that the implementation will yield a robust, high performance closed loop system. This detailed design methodology is presented and a sample design is carried out and verified by simulation. The effects due to sampling, quantization, friction and frequency uncertainty are included in the simulation study.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.75351
Date January 1987
CreatorsStudenny, John.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Electrical Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 000416879, proquestno: AAINL38214, Theses scanned by UMI/ProQuest.

Page generated in 0.0017 seconds