Return to search

Integrated system identification/control design with frequency weightings.

by Ka-lun Tung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 168-[175]). / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Control with Uncertainties --- p.1 / Chapter 1.1.1 --- Adaptive Control --- p.2 / Chapter 1.1.2 --- H∞ Robust Control --- p.3 / Chapter 1.2 --- A Unified Framework: Adaptive Robust Control --- p.4 / Chapter 1.3 --- System Identification for Robust Control --- p.6 / Chapter 1.3.1 --- Choice of input signal --- p.7 / Chapter 1.4 --- Objectives and Contributions --- p.8 / Chapter 1.5 --- Thesis Outline --- p.9 / Chapter 2 --- Background on Robust Control --- p.11 / Chapter 2.1 --- Notation and Terminology --- p.12 / Chapter 2.1.1 --- Notation --- p.12 / Chapter 2.1.2 --- Linear System Terminology --- p.13 / Chapter 2.1.3 --- Norms --- p.15 / Chapter 2.1.4 --- More Terminology: A Standard Feedback Configuration --- p.17 / Chapter 2.2 --- Norms and Power for Signals and Systems --- p.18 / Chapter 2.3 --- Plant Uncertainty Model --- p.20 / Chapter 2.3.1 --- Multiplicative Unstructured Uncertainty --- p.21 / Chapter 2.3.2 --- Additive Unstructured Uncertainty --- p.22 / Chapter 2.3.3 --- Structured Uncertainty --- p.23 / Chapter 2.4 --- Motivation for H∞ Control Design --- p.23 / Chapter 2.4.1 --- Robust stabilization: Multiplicative Uncertainty and Weight- ing function W3 --- p.24 / Chapter 2.4.2 --- Robust stabilization: Additive Uncertainty and Weighting function W2 --- p.25 / Chapter 2.4.3 --- Tracking Problem --- p.26 / Chapter 2.4.4 --- Disturbance Rejection (or Sensitivity Minimization) --- p.27 / Chapter 2.5 --- The Robust Control Problem Statement --- p.28 / Chapter 2.5.1 --- The Mixed-Sensitivity Approach --- p.29 / Chapter 2.6 --- An Augmented Generalized Plant --- p.30 / Chapter 2.6.1 --- The Augmented Plant --- p.30 / Chapter 2.6.2 --- Adaptation of Augmented Plant to Sensitivity Minimiza- tion Problem --- p.32 / Chapter 2.6.3 --- Adaptation of Augmented Plant to Mixed-Sensitivity Prob- lem --- p.33 / Chapter 2.7 --- Using MATLAB Robust Control Toolbox --- p.34 / Chapter 3 --- Statistical Plant Set Estimation for Robust Control --- p.36 / Chapter 3.1 --- An Overview --- p.37 / Chapter 3.2 --- The Schroeder-phased Input Design --- p.39 / Chapter 3.3 --- The Statistical Additive Uncertainty Bounds --- p.40 / Chapter 3.4 --- Additive Uncertainty Characterization --- p.45 / Chapter 3.4.1 --- "Linear Programming Spectral Overbounding and Factor- ization Algorithm (LPSOF) [20,21]" --- p.45 / Chapter 4 --- Basic System Identification and Model Reduction Algorithms --- p.48 / Chapter 4.1 --- The Eigensystem Realization Algorithm --- p.49 / Chapter 4.1.1 --- Basic Algorithm --- p.49 / Chapter 4.1.2 --- Estimating Markov Parameters from Input/Output data: Observer/Kalman Filter Identification (OKID) --- p.51 / Chapter 4.2 --- The Frequency-Domain Identification via 2-norm Minimization --- p.54 / Chapter 4.3 --- Balanced Realization and Truncation --- p.55 / Chapter 4.4 --- Frequency Weighted Balanced Truncation --- p.56 / Chapter 5 --- Plant Model Reduction and Robust Control Design --- p.59 / Chapter 5.1 --- Problem Formulation --- p.59 / Chapter 5.2 --- Iterative Reweighting Scheme --- p.60 / Chapter 5.2.1 --- Rationale Behind the Scheme --- p.62 / Chapter 5.3 --- Integrated Model Reduction/ Robust Control Design with Iter- ated Reweighting --- p.63 / Chapter 5.4 --- A Design Example --- p.64 / Chapter 5.4.1 --- The Plant and Specification --- p.64 / Chapter 5.4.2 --- First Iteration --- p.65 / Chapter 5.4.3 --- Second Iteration --- p.67 / Chapter 5.5 --- Approximate Fractional Frequency Weighting --- p.69 / Chapter 5.5.1 --- Summary of Past Results --- p.69 / Chapter 5.5.2 --- Approximate Fractional Frequency Weighting Approach [40] --- p.70 / Chapter 5.5.3 --- Simulation Results --- p.71 / Chapter 5.6 --- Integrated System Identification/Control Design with Iterative Reweighting Scheme --- p.74 / Chapter 6 --- Controller Reduction and Robust Control Design --- p.82 / Chapter 6.1 --- Motivation for Controller Reduction --- p.83 / Chapter 6.2 --- Choice of Frequency Weightings for Controller Reduction --- p.84 / Chapter 6.2.1 --- Stability Margin Considerations --- p.84 / Chapter 6.2.2 --- Closed-Loop Transfer Function Considerations --- p.85 / Chapter 6.2.3 --- A New Way to Determine Frequency Weighting --- p.86 / Chapter 6.3 --- A Scheme for Iterative Frequency Weighted Controller Reduction (IFWCR) --- p.87 / Chapter 7 --- A Comparative Design Example --- p.90 / Chapter 7.1 --- Plant Model Reduction Approach --- p.90 / Chapter 7.2 --- Weighted Controller Reduction Approach --- p.94 / Chapter 7.2.1 --- A Full Order Controller --- p.94 / Chapter 7.2.2 --- Weighted Controller Reduction with Stability Considera- tions --- p.94 / Chapter 7.2.3 --- Iterative Weighted Controller Reduction --- p.96 / Chapter 7.3 --- Summary of Results --- p.101 / Chapter 7.4 --- Discussions of Results --- p.101 / Chapter 8 --- A Comparative Example on a Benchmark problem --- p.105 / Chapter 8.1 --- The Benchmark plant [54] --- p.106 / Chapter 8.1.1 --- Benchmark Format and Design Information --- p.106 / Chapter 8.1.2 --- Control Design Specifications --- p.107 / Chapter 8.2 --- Selection of Performance Weighting function --- p.108 / Chapter 8.2.1 --- Reciprocal Principle --- p.109 / Chapter 8.2.2 --- Selection of W1 --- p.110 / Chapter 8.2.3 --- Selection of W2 --- p.110 / Chapter 8.3 --- System Identification by ERA --- p.112 / Chapter 8.4 --- System Identification by Curve Fitting --- p.114 / Chapter 8.4.1 --- Spectral Estimate --- p.114 / Chapter 8.4.2 --- Curve Fitting Results --- p.114 / Chapter 8.5 --- Robust Control Design --- p.115 / Chapter 8.5.1 --- The selection of W1 weighting function --- p.115 / Chapter 8.5.2 --- Summary of Design Results --- p.116 / Chapter 8.6 --- Stress Level 1 --- p.117 / Chapter 8.6.1 --- System Identification Results --- p.117 / Chapter 8.6.2 --- Design Results --- p.119 / Chapter 8.6.3 --- Step Response --- p.121 / Chapter 8.7 --- Stress Level 2 --- p.124 / Chapter 8.7.1 --- System Identification Results --- p.124 / Chapter 8.7.2 --- Step Response --- p.125 / Chapter 8.8 --- Stress Level 3 --- p.128 / Chapter 8.8.1 --- System Identification Results --- p.128 / Chapter 8.8.2 --- Step Response --- p.129 / Chapter 8.9 --- Comparisons with Other Designs --- p.132 / Chapter 9 --- Conclusions and Recommendations for Further Research --- p.133 / Chapter 9.1 --- Conclusions --- p.133 / Chapter 9.2 --- Recommendations for Further Research --- p.135 / Chapter A --- Design Results of Stress Levels 2 and3 --- p.137 / Chapter A.1 --- Stress Level 2 --- p.137 / Chapter A.2 --- Stress Level 3 --- p.140 / Chapter B --- Step Responses with Reduced Order Controller --- p.142 / Chapter C --- Summary of Results of Other Groups on the Benchmark Prob- lem --- p.145 / Chapter C.1 --- Indirect and implicit adaptive predictive control [45] --- p.146 / Chapter C.2 --- H∞ Robust Control [51] --- p.150 / Chapter C.3 --- Robust Stability Degree Assignment [53] --- p.152 / Chapter C.4 --- Model Reference Adaptive Control [46] --- p.154 / Chapter C.5 --- Robust Pole Placement using ACSYDE (Automatic Control Sys- tem Design) [47] --- p.156 / Chapter C.6 --- Adaptive PI Control [48] --- p.157 / Chapter C.7 --- Adaptive Control with supervision [49] --- p.160 / Chapter C.8 --- Partial State Model Reference (PSRM) Control [50] --- p.162 / Chapter C.9 --- Contstrainted Receding Horizon Predictive Control (CRHPC) [52] --- p.165 / Bibliography --- p.168

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_320644
Date January 1995
ContributorsTung, Ka-lun., Chinese University of Hong Kong Graduate School. Division of Systems Engineering and Engineering Management.
PublisherChinese University of Hong Kong
Source SetsThe Chinese University of Hong Kong
LanguageEnglish
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xiv, 168, [7] leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0026 seconds